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1. Introduction

Youtube

This book serves as the companion text to the Coursera MOOC SCHC : A new era of
interoperability. It provides a detailed exploration of SCHC, a groundbreaking technology
designed to optimize communications in Internet of Things (IoT) networks. The book
combines theoretical foundations with practical implementations, offering readers both the
understanding and hands-on experience needed to master SCHC.

1.1 Compression mechanisms
The transformative power of compression technologies extends far beyond their technical

implementations – they have historically been catalysts for revolutionary changes in how
we communicate. Consider the early days of Internet connectivity : without the advent of
modem compression techniques, the dream of bringing internet access to millions of homes
through standard telephone lines would have remained just that – a dream. The ability to
compress data made it possible to squeeze more information through the limited bandwidth
of copper wires, directly enabling the massive expansion of internet adoption in the 1990s.

This pattern repeated itself during another crucial transition in telecommunications
history : the shift from circuit-switched to packet-switched networks for voice communica-
tions. Voice over IP (VoIP) became practically viable only when compression technologies

https://youtu.be/1bmjQx2kqB8?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/1bmjQx2kqB8?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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evolved enough to reduce voice data packets to manageable sizes while maintaining call qua-
lity. This compression capability proved instrumental in enabling the telecommunications
industry’s transition from traditional circuit-switched telephony to modern packet-based
cellular networks.

In the ever-expanding landscape of connected devices, one of the most critical challenges
has been the efficient transmission of data across constrained networks. Although Internet
Protocol (IP) has served as the backbone of network communications for decades, its ove-
rhead poses significant challenges when deployed in Internet of Things (IoT) scenarios. This
is where the story of header compression, particularly Static Context Header Compression
(SCHC), begins to unfold.

Today, we see the same pattern emerging with SCHC in the IoT landscape : Just as
compression made the Internet and VoIP accessible and practical, SCHC is making IP-
based communications viable for resource-constrained IoT devices, catalyzing another wave
of technological transformation. This historical perspective reinforces a crucial lesson :
compression technologies don’t just optimize existing systems ; they enable entirely new
possibilities and drive paradigm shifts in how we build and use communication networks.

1.2 Internet of Things
The development toward efficient header compression in IoT networks reflects a recur-

ring pattern in technological evolution. In the early 2010s, the IoT landscape was marked by
fragmentation and competing technologies. Each new communication protocol that emerged
promised to revolutionize the industry in its own way. LoRaWAN carved out its niche by
enabling long-range communications with minimal power consumption, while SigFox pio-
neered ultra-narrow-band transmissions for specific use cases. Cellular IoT solutions offered
the advantage of widespread coverage, though at the cost of higher power requirements.

This diversity of approaches, while innovative, created significant challenges for de-
velopers and system architects. Each new application required custom solutions, leading
to a cascade of complications. Development costs soared as teams needed to create and
maintain multiple implementations of protocols. The time to market stretched longer as each
new deployment required extensive customization. Perhaps most critically, interoperability
became a significant hurdle, with devices using different protocols unable to communicate
effectively with each other or existing infrastructure.

The Internet Protocol had already proven itself as a solution to similar interoperability
challenges in traditional networking. However, as explained earlier, when applied to IoT
scenarios, IP revealed new challenges. A typical IPv6 packet header alone consumes 40
bytes, followed by additional protocol headers such as UDP with 8 bytes. For an IoT device
sending just a few bytes of sensor data, this overhead could be more than ten times the
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size of the actual payload. In the resource-constrained world of IoT, such inefficiency was
simply untenable.

The challenges facing IoT deployments were multifaceted and interconnected. Energy
efficiency has become a primary concern, particularly evident in the case of smart energy
meters. These devices, designed to operate for years without maintenance, found themselves
consuming up to 70% of their energy by simply transmitting data. Without optimization,
devices that should have been operating for years might require monthly battery changes,
making large-scale deployments impractical.

The impact of SCHC becomes particularly evident in smart metering deployments.
Traditional implementations requiring 200-byte daily transmissions with battery life of two
to three years have been transformed. With SCHC, these same devices can operate with
just 20-30 bytes of daily transmission, extending battery life beyond ten years and enabling
deployment across multiple network types. The technology has proven especially valuable
for multi-radio devices, where SCHC serves as a common IP interface layer sitting between
the application and various radio options.

Bandwidth restrictions further complicated the situation. LoRaWAN networks impose
strict limitations on data transmission, with maximum payloads ranging from 51 to 242
bytes and daily transmission quotas of approximately 30KB. Satellite communications faced
similar constraints, with the added burden of high costs per transmitted byte and limited
transmission windows.

Static Context Header Compression emerged as an elegant solution to these challenges.
Rather than transmitting complete headers with every packet, SCHC takes advantage of
the predictable nature of IoT communications. Most IoT devices communicate with the
same endpoints using consistent patterns, allowing significant optimization through context-
aware compression. This approach has transformed the landscape of IoT communications,
reducing 40-byte headers to mere bits while maintaining full functionality.

Security considerations have been paramount in the development of SCHC. The techno-
logy achieves its efficiency without compromising security through a sophisticated multi-
layer approach. By first compressing application data, then applying encryption through
DTLS, and finally compressing the encrypted payload, SCHC achieves an 80% reduction
in transmitted bytes while maintaining support for robust 4K certificates and full security
compliance.

The future applications of SCHC extend beyond traditional IoT scenarios. Ambient IoT
represents an exciting frontier, where battery-free sensors and energy harvesting devices
communicate through 5G networks with RFID-like efficiency. Even more ambitious appli-
cations include interplanetary communications, where efficient header compression could
play a crucial role in space-to-Earth communications.
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1.3 The Book of SCHC
Looking forward, the evolution of header compression in IoT represents more than just

technical optimization—it marks a fundamental shift in how we approach efficient commu-
nications in constrained environments. As we explore the technical depths of these solutions
in subsequent chapters, we’ll see how proper implementation of header compression tech-
niques can transform the possibilities for IoT deployments, enabling new applications while
optimizing existing ones.

The following chapters will delve into the technical implementation details of SCHC,
exploring various deployment scenarios and examining real-world case studies. We will
investigate the nuances of performance optimization and discuss emerging applications that
push the boundaries of what’s possible in IoT communications. Through this exploration,
readers will gain a comprehensive understanding of how header compression is shaping the
future of connected devices and enabling the next generation of IoT innovations.

Chapter 1 presents the foundations and history of header compression in IoT networks.
It explains how compression has enabled major technological transitions in telecommunica-
tions. It shows why SCHC was needed for IoT devices.

Chapter 2 introduces the Internet protocol stack essential for SCHC. It explains IPv6,
UDP, and CoAP protocols. It describes how to analyze network traffic with Wireshark and
Scapy tools.

Chapter 3 describes the elements of the SCHC architecture. It details rule IDs and their
organization. It explains how the Rule Manager works. It shows how to configure rules for
different devices.

Chapter 4 focuses on SCHC compression. It explains field identification and matching
operations. It details compression and decompression actions. It provides examples with
IPv6 and UDP headers. It introduces CoAP header compression.

Chapter 5 demonstrates networking with SCHC. Shows how to setup a basic topology
with the device, the core, and the application. It explains how to compress and route ICMP
ping messages. It includes real implementation examples.

Chapter 6 explores CoAP implementations. It presents two scenarios : an LPWAN
uplink-focused case and an underwater bidirectional case. It shows how to optimize rules
for different network constraints.

Chapter 7 details SCHC fragmentation. It explains the three fragmentation modes :
No-Ack, Ack-Always, and Ack-on-Error. It describes how to handle large messages on
constrained networks. It shows tile-based fragmentation.

Chapter 8 provides a complete example with ping fragmentation. It combines compres-
sion and fragmentation techniques. It shows how to implement bidirectional communication.

Chapter 9 contains answers to all practice questions. It provides detailed explanations
for all exercises. It helps verify understanding of core concepts.



2. Internet protocol stack

2.1 Introduction
Youtube

Most of the network protocols are based on a similar format : a header followed by data
and sometime ending with a trailer. Protocols are often stacked, and the data are in fact
other protocols coming from the adjacent upper layer as represented in Figure 2.1. Note that
the header can be larger than the data.

header data trailer

header data

FIGURE 2.1 – Stacked protocols

Following this architecture, the headers from different protocols are contiguous. SCHC
may use this property to process several layers at the same time.

https://youtu.be/KNgVO1i1VcA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/KNgVO1i1VcA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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FIGURE 2.2 – ISO Reference Model for IoT

The reference model issued based on 7 layers is widely recognized to formalize network
architecture, even if the internet architecture, in a sense, simplified it with only four layers
(cf. figure 2.2) :

— An interface layer, composed of the access technology, like Ethernet, Wi-Fi,. . . They
form Layer 1 and 2 of the ISO reference model.

— The IP layer, which ensures the forwarding of the information. There are two versions
of the IP protocol. IPv4IPv4 is the legacy one and is still popular in computer exchanges.
IPv6 is supposed to succeed IPv4 in any domain, but the large base of IPv4 services
makes the move difficult. For new services, and IoT belongs to that category, IPv6IPv6 is
the default protocol, and we will base our example on it. This is layer 3 of the OSI
Reference Model.

— Internet Control Message Protocol (ICMP) is associated with IP to control the way
the IP layer behaves. Even if ICMP messages are encapsulated in IP packets, ICMPICMP is
usually considered a layer 3 protocol. ICMP is also the support for some applications,
such as Ping. In IPv6, ICMPv6 is used to configure the nodes during bootstrap through
Neigbor Discovery Protocol (NDP).

— The transport layer includes two protocols :

— Transmission Control Protocol (TCP) controlling end-to-end the good behavior
of the exchange. This is done by establishing a state at each end. The state
evolves with the bytes sent and received.

— User Datagram Protocol (UDP) which provides no control over the exchange
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FIGURE 2.3 – IPv6 Header

and, therefore, is very light. IoT applications are mainly based on this protocol.

— Applications, known as layer 7 in the ISO Reference Model, are directly above layer
4 in the Internet Architecture, creating a gap in layer numbering. CoAP is one of the
available application protocols. CoAP is a lightweight implementation of the REST
paradigm dedicated to constrained objects, as HTTP is widely used by computers.

An header is composed of fields containing specific information, useful for the protocol
itself. Fields are often a binary sequence of the specified size, but the structure of the field
depends on the protocol itself, regarding its format or how the information is stored inside.

2.2 IPv6
Youtube

IPv6 is the new version of the Internet Protocol popularized by IPv4. IPv6 contains
fewer fields than IPv4, and they are very stable during a session.

The IPv6 header, defined in RFC 8200, is composed of several fields (cf. figure 2.3) :

https://youtu.be/dEalbjlhMeU?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/dEalbjlhMeU?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc8200
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— a VersionVersion on 4 bits : it always contains the value 6.

— a Traffic ClassTraffic Class on 8 bits. This field contains two subfields :

— 6 DiffServDiffServ bits indicates a priority in routers to select which packets should be
dropped in case of congestion (cf. RFC 2474).

— 2 Explicit Congestion Notification (ECN)ECN bits used to signal that a congestion is
occurring and inform the source to reduce its throughput (cf.RFC 3168).

— a Flow LabelFlow Label on 20 bits. The value is selected by the source and keep constant during
a flow; when the application remains the same on both ends. This is the equivalent
of the UDP Source and Destination port which may not be available under some
conditions. The value 0 indicates that the flow label is not set.

— a Payload LengthPayload Length on 16 bits. It tells the length of the payload immediately after the
IPv6 header 1.

— a Next HeaderNext Header on 8 bits pointing to the upper layer protocols. The values used in IPv4,
such as 6 for TCP and 17 for UDP are kept, but ICMPv6ICMPv6 is a brand new protocol with
value 58 2.

— a Hop LimitHop Limit on 8 bits counting the number of times the packet has been forwarded.
This value is set arbitrarily by the source, large enough to cross the Internet. Each
router decreases by 1 the value. When the Hop Limit reaches 0 the packet is discarded.
The main goal of this field is to limit the effect of routing loops.

— source and destination addresses in 128 bits. Approximately, there are two kinds
of IPv6 addresses. The link-locallink-local addresses start with FE80::/64. Global prefixes
usually start with the value 2000::/3. Link-local addresses cannot be routed outside
of a link (i.e., a layer 2 technology), while global addresses allow one to join any
node on the network. The format remains the same for these two categories ; the first
64 bits represent the prefix allocated to the link, and the last 64 bits are unique on the
link.

2.3 Wireshark and pcap
Wireshark is a powerful tool for analyzing packets. It is possible to directly capture the

traffic from an interface or read a file in a pcappcap format. Figure 2.4 on the next page shows
the content of the trace_coap.pcap file.

In the top section or window, each packet is displayed in an abstract manner, with
the packet number in the file, the relative capture time, the source address and port, the
destination address and port, the upper protocol name, the packet length, and a summary of
the highest-level protocol, CoAP in this case.

The middle window displays the protocol fields of the frame highlighted in the top
window. The figure disassembles the IPv6 header, and the corresponding fields can be

1. In IPv4 the length indicates the full length of the datagram including the header.
2. IPv6 may also this field to point out extensions, but they are out of the scope of this document.

https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc3168
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FIGURE 2.4 – Wireshark trace

displayed on the bottom window.
This bottom window displays the packet’s content in hexadecimal and ASCII, when a

value corresponds to a printable ASCII character.

Question 2.3.1: Packet Length

Launch wireshark trace_coap.pcap. Look at packet 6 in the bottom window.
Knowing that the first 14 bytes are the Ethernet header, measure the size of the IPv6
packet.
The network analyzer displays a length of 85 bytes, why does the payload length in
the header field contain the value 31?

2.4 Scapy
Even though Wireshark is a powerful tool for looking at a flow and understanding its

content, it is harder to manipulate the packets and establish some statistics. Scapy Scapyis a
powerful Python module to manipulate packets and even forge new packets. To install scapy,
type :

# pip3 install scapy
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The following program pcap_read.py reads a pcap file and displays its content. pcap_read.py

Listing 2.1 – pcap_read.py

1 #!/usr/bin/env python3
from scapy.all import *

3

# rdpcap comes from scapy and loads in our pcap file
5 packets = rdpcap(’trace_coap.pcap’)

7 for packet in packets:
packet.show()

9

hexdump(packet)
11

print ("="*40)

— line 2, the scapy module is downloaded 3.

— Line 5, the pcap file is opened.

— Line 7, the loop allows the program to access each packet in the pcal file.

— Lines 8 and 10, each packet is disassembled and displayed in hexadecimal.

The result is as follows.

# python3 pcap_read.py | more
###[ Ethernet ]###

dst = fa:16:3e:1e:cc:2c
src = 9a:16:58:8d:10:8c
type = IPv6

###[ IPv6 ]###
version = 6
tc = 0
fl = 479647
plen = 32
nh = UDP
hlim = 48
src = 2001:41 d0 :404:200::3 a86
dst = 2001:41 d0 :302:2200::13 b3

###[ UDP ]###
sport = 33209
dport = 5683
len = 32
chksum = 0x9ca7

###[ Raw ]###
load = ’B\x01\\x9e\\xea >\\xb7 <user.ackl.io\\x84time ’

0000 FA 16 3E 1E CC 2C 9A 16 58 8D 10 8C 86 DD 60 07 ..>..,..X..... ‘.
0010 51 9F 00 20 11 30 20 01 41 D0 04 04 02 00 00 00 Q.. .0 .A.......
0020 00 00 00 00 3A 86 20 01 41 D0 03 02 22 00 00 00 ....:. .A..."...
0030 00 00 00 00 13 B3 81 B9 16 33 00 20 9C A7 42 01 .........3. ..B.
0040 9E EA 3E B7 3C 75 73 65 72 2E 61 63 6B 6C 2E 69 ..>.<user.ackl.i
0050 6F 84 74 69 6D 65 o.time
========================================
...

Note that layer 7 has not been identified by scapy and is displayed as a raw structure.

3. since the import is done with from scapy functions will not be prefixed by scapy.

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/pcap_read.py
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Question 2.4.1: Flow Label

To access to a specific field in a packet, scapy uses the following notation p[L].f,
where p is the Scapy frame, L is the layer and f is the field in that layer. For example,
packet[UDP].sport gives access to the UDP source port.
Modify the previous program pcap_read.py to display all the Flow Labels used by
IPv6.

2.5 UDP
The UDP header is very simple ; it is composed of four 16-bit-long fields :

— Source port designates the application used by the source,

— Destination port indicates the application that will process the payload,

— Length in bytes of the UDP message. This information is redundant with the IPv6
payload length.

— The checksum is global to the packet and validates the correctness of the IPv6 header,
the UDP header, and the payload.

2.6 ICMPv6
ICMPv6 is a control protocol to report errors and performs functions such as diagnostics.

Its protocol number is 58, placed on the next header of the IP header format. The header
format has the following header fields :

— Type. This field indicates the message type in 8 bits, and its value determines the
format of the remaining header.

— Code. This field depends on the Type message value. It is 8 bits long and gives more
information about the message type, creating an additional information level.

— Checksum. This field detects data corruption in the ICMPv6 message and part of the
IPv6 header. It is 16 bits long.

— Message Body. The size of this field is variable and depends on the message type and
code. Each Type provides a format.

2.7 CoAP
CoAP is a lightweight protocol that implements the same REST paradigm as HTTP.

Therefore, CoAP works in the client/server mode. The server owns resources, identified by
an URI that are manipulated by methods, such as GET, PUT, POST, DELETE.

The client/server mode is not restricted to the nature of the node :
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— A device may be a server, and each value measured by a sensor or each action made
by a actuator may be modelized through a resource and its associated URI. A client
may request a value through a GET (for example, GET /temperature) or set a state
for the actuator (for example, POST /door "close").

— a Device may act as a client and push regularly measured value to a server (for
example, POST /temperature 25) and periodically check the content of a resource
to perform an action (for example, GET /door).

Both have pros and cons and can both be implemented simultaneously on the nodes.
The former mode allows several applications to access the device’s resources, as the latter
one imposes the device to send to a specific server. On the other hand, when a device is
acting as a client, the application may be informed faster of value changes than when the
device is periodically queried.

2.7.1 REST principle

Youtube

REST principles 4 are widely used, not only for Web sites but also to formalize com-
munication between computers. They establish a strong decoupling between the client and
the server, which in traditional computing offers better scalability, and in IoT may preserve
energy. The most important concepts are the following :

— A server maintains resources that can be manipulated by clients.

— The resources are identified by a unique and unambiguous identifier, called Universal
Resource Identifier (URI).

— The resources have a format from which other URIs can be extracted.

— The server does not maintain any state after processing a request from a client 5. The
state is on the client side.

— The resource may be cached on the client or in intermediary systems.

4. https://en.wikipedia.org/wiki/REST
5. we will see later that CoAP with Observe breaks this assumption is some cases.

https://youtu.be/XC6MM9VtA5E?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/XC6MM9VtA5E?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://en.wikipedia.org/wiki/REST
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Token (if any)

FIGURE 2.5 – Format of a CoAP Header

2.7.2 CoAP Header
Youtube

CoAP is the protocol defined between the client and the server to interact with the
resource. CoAP runs on different protocols such as UDP, TCP, SMS, etc. but we will focus
on UDP which is the main support. One reason is that UDP is very light and has a limited
footprint in both messages and implementation. For SCHC it will be easy to compress, too.

Since UDP, in contrast to TCP, does not provide mechanisms to recover packet losses or
to reorder messages, CoAP will implement some lightweight ones.

CoAP keep a structure similar to HTTP, which 3 parts in the message : a mandatory
header, followed by options, and, if needed, a payload starting with a separator to distinguish
it from the header.

The mandatory header part on 32 bits :

— A 2 bit version field indicates the current version 1 as defined in RFC 7252. Therefore,
this field always has the binary value 01, and it will not be the most difficult to
compress.

— A Type on 2 bits used to make the communication reliable or not :

— value 00 indicates a confirmable message or CON CONwhich must be acknowledged
by the receiver.

— value 01 indicates a non confirmable message or NON NONwhich does not require
any acknowledgment by the receiver.

— value 10 indicates an acknowledgment message or ACK ACKby the receiver of a CON
message. This message, as the other, may contain data.

— value 11 indicates a reset message or RST RSTin response of a CON message when
something goes wrong. This message does not contain data.

— The length of the token on 4 bits, which immediately follows the mandatory header,
the authorized values are between 0 (the token does not exist) to 8. Higher values are

https://youtu.be/g6mOyrige50?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/g6mOyrige50?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc7252
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reserved.

— A code on 8 bits which cleverly encodes the 3 digit codes used by HTTP. The first 3
bits encode the leftmost digit varying between 1 and 5, the remaining 5 bits encode the
2 remaining digits. For example, the famous 404 error will be encoded as 100_00100.
It could be represented with the hexadecimal value 0x84, but CoAP prefers the dotted
4.04 to be closer to the HTTP representation. This field is also used to code the
requests, setting the first 3 bits to 0 :

— 0.00 codes empty message, that may be used to an equivalent of ping at the
CoAP level.

— 0.01 for GET that allows a client to access a resource managed by a server.

— 0.02 for POST which allows a client to create a specific resource on the server.

— 0.03 for PUT which allows a client to modify the content of an existing resource
on the server.

— 0.04 for DELETE to remove a specific resource from the server.

— 0.05 for FETCH defined in RFC 8132. In CoAP, a FETCH is equivalent of a
GET, but some part of the URI is stored in the payload for compactness, instead
of the URI part, which required an ASCII representation.

— 0.06 for PATCH defined in RFC 8132. It also to modify a part of the structure,
in opposition to a PUT which will replace the full structure.

— 0.07 for iPATCH to signal the server that the request must be idempotent.

— The remaining 16 bits contain the Message ID, which will be described in detail in
the next sections.

2.7.3 Reliable Messages

Youtube

Since UDP does not provide any way to recover losses and TCP implies a complex im-
plementation, CoAP offers with the Types and the Message ID a way to secure transmission.
The algorithm is simple. If the sender selects a Message ID value and set the type to CON,
the receiver will acknowledge it with a response containing the same Message ID value and
a type set to ACK.

Of course, nothing is perfect in this world and the CON message or the ACK can get
lost. To cover a lost message, the sender must implement a timer and transmit again the

https://www.rfc-editor.org/info/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://youtu.be/cFoWTybzrnA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/cFoWTybzrnA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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unacknowledged message with, of course, the same Message ID.
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FIGURE 2.6 – Confirmable worst case

It is important to understand how the management of the Message ID works in CoAP
to optimize the fields for header compression. Figure 2.6 gives an illustration of the worst-
case scenario, where all attempts, but the last one, fail. By default, CoAP allows for 4
attempts 6. A timer triggers retransmission, and the duration doubles at each attempt. To
avoid synchronization between nodes, the timer delays are randomized ; the waiting delay
can be multiplied by a fact between 1 and 1.5. In the worst-case scenario, with property
Σ

n−1
i=0 2i = 2n −1, the cumulative timer time is :

ACK_T IMEOUT × (2MAX_RET RANSMIT −1)×ACK_RANDOM_T IME

corresponding to 2× (25 −1)×1.5 = 45 seconds for the maximum delay before successful
transmission.

6. In figure 2.6, for readability reasons, only 3 attempts are represented
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The computation of maximum delay for a successful transmission implies taking into
account the maximum transmission time or latency in both directions and the maximum
processing time on the receiver. The CoAP standard assumes that the latency cannot exceed
100s and the maximum processing time is 2s.

Summing all these delays sets the maximum lifetime of a transaction at 247 seconds,
which can be approximated to 5 minutes. This is based on default values taken by the
standard, but covers most of the common cases.

Of course, there are other scenarios than the one depicted in Figure 2.6 on the facing
page. The first transmission may be received, but not the acknowledgments, leading to
retransmission of the message. In that case, the receiver will receive multiple copies of
the message and will use the Message ID field to recognize them and not process it ; the
message will be just acknowledged.

From a compression point of view, if the Message ID fields is reduced to few bits, and
the sending frequency is too high, the same message ID will appear again during the 5
minute window and will be considered as a retransmission and not processed.

For non-confirmable messages, it could be considered that the message ID has no
importance, since they are not acknowledged, but the underlying layers may duplicate the
message ; it can be particularly the case where flooding is used to implement multicast. The
Message ID helps the receiver to ignore extra copies. So after receiving a NON message,
the receiver will ignore for a period of 145 seconds.

2.7.4 Token

When a client requests a resource, the server may not have immediate access to its
content. It can be, for example, a particle sensor that requires one to start a fan and wait a few
seconds before returning the value. We saw in the previous section that the retransmission
timer is initially set to 2 seconds. So, if the measurement takes more time, the sender will
consider that the request was lost and will send it again.

CoAP includes the notion of TokenToken which can be viewed as a kind of connection ; every
message that contains the same token will be considered linked.

Figure 2.7 on the next page illustrates the procedure for the use of tokens 7. The client
sends a CoAP request to get access to a measurement. The request is protected with a
comfirmable message and includes a token with value 0xFE12. Since the value acquisition
takes time, the server acknowledges the request with an empty ACK message with the same
Message ID as the request.

When the value is obtained, the server uses a confirmable message to send the response
to the client ; the Message ID is generated by the server, but the Token is the same as in

7. Tokens are also used in combination with the ObserveObserve procedure.
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Client Server
CON MID: 0x1234 GET /particule
Token: 0xFE12
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FIGURE 2.7 – Token usage

the original request. The client may establish the relationship between the request and the
response.

It could be noted that the confirmable and acknowledgment messages are not related to
the REST status. In this example, the client and the server send both of them.

The token is not mandatory ; the field Token Length Token Lengthtells how many bytes follow the
CoAP header to form the token. If not present, Token Length is set to 0, any value below
8 indicates the presence of the token.

In terms of compression, it is always better to avoid the use of tokens if the Message ID
can cover the scenario.

Question 2.7.1: CoAP Header

Scapy may not understand CoAP headers and will consider the UDP payload as raw
data. Based on pcap_read.py write a program that displays the CoAP header and
the Token, if exists.



2.7 CoAP 25

Question 2.7.2: CoAP Port number

Using the previous program, or Wireshark, what is the CoAP Port Number used by
the server ?

Question 2.7.3: Message ID

How do the Message ID evolve between two requests ? Is that mandatory?

2.7.5 Options
Option are essential in CoAP, since the mandatory header does not contain a lot of

information, if the extend the CoAP protocol itself, they are called extension, the other carry
information to implement the REST paradigm.

Before looking at some CoAP options in more detail, let us see the general way CoAP
manipulates options. A unique number is assigned to each option, as shown in Table 2.1 on
page 27. Options may transport values ; the value length depends on the option, but may
also be different from one message to the other. The table also indicates if an option can be
repeated so appearing several times in the CoAP Header.

CoAP protocol optimize the coding of the option into the Header. First, the options are
sorted in increasing order, and the delta between two consecutive options is stored on 4 bits.
An option starts with the delta if its value is less than 13, otherwise. If the delta is between
14 and 255 + 13, then the value 14 is stored in the 4 bits and the delta minus 13 is stored in
the following byte. If the delta is higher than 268, then 15 is stored in the 4 bit field, and
two bytes the next two bytes are used to store the real delta.

The 4 bits following the delta are used to store the value length of the option. The same
escape encoding is used. if the length is greater than 13, the value is stored in the following
bytes. Figure 2.8 on the next page gives the generic option format.

For example, if you have to code two options with values of 5 and 20, the difference is
15. The first option is usually coded with ∆ T at 5. For the second option, the ∆T is set to 13
and the next byte will take the value 2.

The way the option are coded are typical form CoAP, during the compression, SCHC
will work on an abstract representation of the option.

2.7.6 CoAP Extensions
URI representation

CoAP extensions are quite similar to the options found in HTTP. They are used, for
instance, to carry the URI identifying the resource to the server. In HTTP, the URI string
has to be parsed to find the different elements. In CoAP, each element is stored in a specific
option.
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Delta Option Length 1 Byte

Delta Option (extended) 1 Byte if Delta Option equals 13 or 14

Delta Option (extended) 1 Byte if Delta Option equals 14

Longueur Option (extended) 1 Byte if Option Length equals 13 or 14

Longueur Option (extended) 1 Byte if Option Length equals 14

Option Data
(if Option Length >0)

0 1 2 3 4 5 6 7

FIGURE 2.8 – Options format

coap://sensor.org/floor1/room10?time=-3600&u=celcius

uri-query: u=celcius
uri-query: time=-3600
uri-path: room10
uri-path: floor1
uri-host: sensor.org

FIGURE 2.9 – URI coding
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Value Name Type Nature repeatedComment
0 reserved
1 If-MatchIf-Match opaque critical yes Used to indicate to the server to make the request

only under certain conditions.

3 Uri-HostUri-Host string critical Contains the server name of a URI (name, IPv4
or IPv6 address). Generally, it is not necessary
to specify this since CoAP messages are sent to
this address.

4 ETagETag opaque optional yes Used to manage resource caching

5 If-None-MatchIf-None-Match empty critical Used to tell a server to make the request only
under certain conditions.

6 ObserveObserve integer optional Allows a server to send a request to the state
changes of a resource. In response, the value
must always increase.

7 Uri-PortUri-Port integer critical Contains the number of the UDP port on which
CoAP is launched. Usually, this field is not nee-
ded since the CoAP server is already expecting
messages on this port.

8 Location-PathLocation-Path string optional yes Used in response to a POST request to specify a
segment of the resource path.

11 Uri-PathUri-Path string critical yes Contains one of the segments of the URI

12 Content-FormatContent-Format integer optional Defines the format in which data is encoded

14 Max-AgeMax-Age integer optional The length of time the resource can be cached.

15 Uri-QueryUri-Query string critical yes
17 AcceptAccept integer critical Indicates the formats that the client can accept.

20 Location-QueryLocation-Query string optional yes Used in response to a POST request to indicate
the path to the resource.

35 Proxy-UriProxy-Uri string critical Contains a URI that must be taken into account
by the proxy.

39 Proxy-SchemeProxy-Scheme string critical Indicates the encoding scheme.

60 Size1Size1 integer optional Indicates the size of the resource.

258 No-ResponseNo-Response integer optional Limite les notifications REST

TABLE 2.1 – Some options of the CoAP protocol

Figure 2.9 on the facing page explains how the URI is divided into different elements.
The first element Uri-HostUri-Host contains the server name or the IP address. It is immediately
followed by Uri-PathUri-Path which are repeated for each element. This simplifies the parsing
by the receiver, who can directly access all elements through a repetition of options. If
necessary, Uri-QueryUri-Query follows and contains each element of the query.

When sending the options in a CoAP header, Uri-HostUri-Host may be omitted most of the
time, since the server usually runs a single service. Otherwise, this option, as in HTTP,
allows one to differentiate which server is called. Table 2.1 indicated that Uri-Path option
has the value 11. If this option appears in the first position, the delta will be 11 or 0xb. For
the second instance, the delta will be 0. The option Uri-QueryUri-Query has a value 15, so the delta
will be 4 for the first instance and 0 for the second.
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FIGURE 2.10 – Format of a CoAP message

If the request is a GET or a DELETE, the payload is empty, and the CoAP message
ends after options. If the request is a POST or a PUT, the payload is usually present. To
distinguish between the option and the payload, a special delimiter, called Payload marker Payload marker,
set to value 0xFF, is inserted between the last option and the payload.

Content formats

Resources information may follow a serialization format such as JSON or CBOR
and may also follow certain rules to structure this serialization format with regard to an
application.

For example, Table 2.2 on the facing page shows some typical values for the content
format. If the value 50 indicates a generic JSON serialization, the value 110 precisions that
this JSON format is structured for SENML and the value 11542 for LwM2M.

If no option carries a content format, then value 0 indicating plain text content is
assumed.

In a GET request, the Accept Acceptoption indicates to the server which format is expected in
the answer. In a response, Content-Format Content-Formatis used.

Question 2.7.4: Generate a CoAP message

Generate a CoAP Message requesting the content of resource
/sensor/max_temperature with the CBOR serialization. No token are used.



2.7 CoAP 29

Value Type
0 text/plain ; charset=utf-8
40 application/link-format
41 application/xml
42 application/octet-stream
47 application/exi
50 application/json
60 application/cbor
110 application/senml+json
112 application/senml+cbor
11542 application/vnd.oma.lwm2m+tlv
11543 application/vnd.oma.lwm2m+json

TABLE 2.2 – Content formats

Question 2.7.5: Response

What will be the answer if the maximum temperature is 20°Celsius is immediately
returned.

No Response

One of the difficulties with CoAP is dealing with two-state machines. CON implies an
almost immediate response from the receiver acknowledging the message ID. The REST
state machine also acknowledges the request by a response. Figure 2.7 on page 24 illustrates
the behavior of these two state machines, when the REST response is delayed.

Suppose that we have a particularly reliable network, or that the request contains an
update not particularly important. The type NON can be used, but it is not possible to suppress
the REST response, which will be sent by the receiver to other NON requests.

The option No-Response is defined in RFC 7967 and allows the client to inform the
server which kind of notification can be avoided. Of course, this cannot be used with the
method GET or FETCH that imposes a response with the content. For example, with a POST,
the client may expect only negative notifications (starting with 4.xx or 5.xx) and not
positive notifications such as 2.04.

The No-Response option may include a 1 byte bitmap, when the second rightmost bit
is set to one, this indicates that the client is not interested by a 2.xx notification. The same
principle applies to the fourth and fifth rightmost bits.

Question 2.7.6: No-Response bitmap

What will be the bitmap value if a client is just interested in 4.xx and 5.xx notifica-
tions.

https://www.rfc-editor.org/info/rfc7967
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FIGURE 2.11 – Periodic sending with the option Observe

Observe

With the REST architecture, the server always responds to a client’s request. If we want
to follow the evolution of a resource, the client must periodically ask for the value ; the
server does not keep any status on past requests. This is not always compatible with the
energy constraints of sensors. Suppose that we have a fire alarm that must inform when the
smoke level reaches a certain threshold. There are two possibilities :

— The alarm is a REST client and sends a POST to a server when the alert is triggered.
For this to work, the alarm must be configured with the address of the server to which
to send its POST requests ;

— The alarm is a REST server that has a resource that gives the smoke rate. It does not
need to be configured. Clients query it, and it responds to their address. However, if
you want to determine when a threshold is reached, you have to continuously query
the resource at a high frequency if you don’t want to miss any information.

The option Observe Observe, defined in RFC 7641, allows a server to periodically send the value
of a resource to the client that requested it. The sending period (or the sending rules such as
send when a threshold is reached) is defined by the behavior of the server.

https://www.rfc-editor.org/info/rfc7641
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Figure 2.11 on the facing page illustrates this behavior. The client sends a GET request
with the Observe option set to 0, but in value. If the client accepts this option, it will respond
by setting it in its responses. In this case, it must have a value that can only increase from
response to response. This is useful to allow the client to detect a desequencing of the
responses. Thus in the example, the Observe stamp 30 arrives after the one stamped 40 and
will be rejected by the client.

Note also that the TokenToken field must be present to make the link between the request and
the responses.

It must also be possible to stop an Observe. There are several cases :

— The client wants to stop an Observe in progress. He redoes the same request but sets
the Observe option to 1.

— the client restarts, it may lose its context about the Observe, but continue to receive
periodic requests from the server. The client not recognizing the Token, sends a
message ReSeTReSeT . The server cancels the periodic transmission to the client.

— the client is unreachable, it will not be able to cancel the transmission. As a rule,
responses with the Observe option are carried in confirmable CONCON messages. The
server may occasionally send the response in a confirmable CONCON message. If it does
not receive an acknowledgment from the client, it deduces that it has disappeared and
stops sending periodic responses.

2.8 Hand-on CoAP
In this section, we are going to study how CoAP header are formed using the aoicoapaoicoap 8

Python implementation.
The package includes two programs : aiocoap_fileserver is a CoAP server that

allows file contents to be retrieved in a directory, and aoicoap_client which helps create
CoAP requests. For the purpose of this hands-on, both programs will communicate in IPv6
through the loopback interface and the associate ::1 IPv6 address 9. On the same computer,
we will start a Wireshark 10 protocol analyzer, listen to the loopback interface, and filter
traffic for UDP on the default allocated port 5683 11.

The first step is to start the CoAP server in a terminal window. Type :

Listing 2.2 – CoAP Server
%aiocoap -fileserver --bind ’[::1]:5683 ’ /bin

8. Type pip3 install aiocoap
9. to avoid confusion in the notation with a port number, the IPv6 address is surrounded with square

brackets which must be themselves quoted to not be interpreted by the Linux shell.
10. see wireshark.org for installation.
11. When the capture is started, type in the filter window udp.port==5683
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FIGURE 2.12 – CoAP exchange captured by Wireshark.

This starts the server on the loopback address and the default port. The fileserver sees /bin
as the top directory 12.

On another terminal, send a CoAP request through the Command Line Interface with
wireshark active.

Listing 2.3 – CoAP client
%aiocoap -client -v "coap ://[::1]"
</cat >,</echo >,</launchctl >,</df >,</pwd >,</test >,</csh >,</wait4path >,
</unlink >,</sleep >,</stty >,</date >,</realpath >,</ed >,</expr >,</pax >,
</bash >,</kill >,</sh >,</ps >,</link >,</tcsh >,</dd >,</mkdir >,</ksh >,
</hostname >,</dash >,</rmdir >,</mv >,</ln >,</ls >,</cp >,</sync >,</zsh >,
</chmod >,</rm >,</[>

This type of network traffic is visible in the Wireshark interface on ?? on page ??.

Question 2.8.1: URI

What is the URI in the previous command?

Analyze the traffic on Wireshark.

12. IPv6 addresses use square brackets to distinguish them from port numbers in URL syntax.
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Question 2.8.2: No options

Why the request contains no option?

Question 2.8.3: Response

What are the options in the response?

Question 2.8.4: Bad request

Forge a request, for example coap://[::1]/foo/bar?q=1r=0, and ask for a
content in CBOR (value 60). What are the CoAP options?

Question 2.8.5: Client

What is the goal of the –non option in the aiocoap-client program?
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Youtube

The compression-decompression and fragmentation-reassembly 1 mechanisms of SCHC
are based on a point-to-point association and a common static context shared by both of these
ends (cf. Figure 3.1 on the facing page). This architectural concept differs from traditional
networks, where a protocol is developed to cover a large number of situations. With SCHC,
the behavior may be adapted to a specific case. Of course, this is an architectural model and
in practice, the static contexts will be defined for classes of traffic pattern and usage.

A SCHC instance SCHC instanceis defined as two End-Point sharing the same static context. The
context is defined as static because it does not evolve directly with the sending or receiving
of SCHC packets. The context contains a Set of Rules Set of Rules(abbreviated in SoR) dedicated to
compression or fragmentation 2.

SCHC has been originally designed for constrained devices and networks, so one of
these end points represents a device. The device traffic issue is designed as uplink traffic 3.

1. To be more, we can also refer to C/D or F/R mechanisms, but most of the time when we talk of
compression rules, we include the decompression process.

2. The way the context is provisioned in both End-Point is out of the scope of the compression and
fragmentation process and being seen latter.

3. In the rest of this book, we will try to represent the device in red color and at the left hand-side of the
figure.

https://youtu.be/glDzBOlrvuA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/glDzBOlrvuA?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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SCHC instance

SCHC
End-Point

SCHC
End-Point

Device Core/Application
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End-Point

SCHC
End-Point

FIGURE 3.1 – SCHC Architecture.

In contrast, the traffic toward the device is seen as the downlink traffic. The other one is
implemented in a core equipment acting as a router or directly on application, depending on
the use case.

The device usually contains a small set of compression or fragmentation rules that
are tailored to the traffic generated and received by the device only. Conversely, the core
manages several instances of SCHC and must know all the devices’ rule sets. Even if all
devices are identical, the SCHC core treats each device as if it were unique.

3.1 Rule ID’s
Youtube

Rules in a static context are identified by rule IDrule ID . A rule ID is a binary sequence that
must be unique within the instance. RFC 8724 does not specify the length of the rule ID’s :
the lengths are chosen when the rules are defined, and the lengths can even be different for
different rules within the same set. Within a set of rules, the rule ID representations must
not overlap when read from left to right.

For example :

— 0 and 111111 are two valid rule ID’s

https://youtu.be/E7EvzcOIMOg?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/E7EvzcOIMOg?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc8724
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— 01 and 0101 is not a valid pair of rule ID’s within the same set : on receiving the
sequence of bits 0101 (from left to right), it is impossible to tell which rule is being
received.

Rule IDs could be described using their binary representation, but for compactness,
the decimal notation rule ID value/rule ID length will be used. For example, 3/8
indicates a rule ID represented in 8 bits and having a decimal value of 3 (right aligned),
which is equivalent to the 00000011 binary representation.

If the slash notation is compact and very close to the prefix notation in IP, take note that
this notation can be misleading. For example,

— 1/2 and 5/4 don’t look overlapping, even though they do (binary 01 and 0101) ;

— 1/2 and 5/4 don’t look like they overlap, even though they do (binary 01 and 0101) ;
as another example, the pair 12/4 and 12/6 looks suspicious even though it is
perfectly valid (binary 1100 and 001100).

.
Figure 3.2 gives an example of the binary tree representation. Some leaves are defined

for compression, others for fragmentation. Compression rules are usually bidirectional ;
the same rule ID can be used in uplink and downlink traffic. In contrast, the fragmentation
is unidirectional ; to allow fragmentation in both directions, at least two rules must be
defined. This choice is driven by the desire to allow different fragmentation behavior in
each direction since the characteristics may differ.

Rule ID

0

1

1

3/3

0

1

1

3/4

1

1

0

0

1

1

0

102/7

Fragmentation

0

0

1

9/6

1

1

15/4

Compression

Compression

Fragmentation

No Compression

bi

bi

bi

downup

FIGURE 3.2 – Example of binary tree associated to rule IDs
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Figure 7.1 on page 101 illustrates the combination of compression and fragmentation
rules. An uncompressed packet arrives, the compressor selects rule 9/6 but remains to be
sent on one piece. The compressor selects rule 3/4 to send the fragments. The receiver
checks the integrity of the message and may return an acknowledgment to the fragmenter
and send the reassembled message to the decompressor which generates the original packet.

The application that receives the responses to the packet and the same rule 9/6 is
used to compress the answer 4. Fragmentation is done using this time rule 15/4. Since
some fragments are lost the receiver asks for their retransmission, then checks integrity,
acknowledges the fragmenter, and sends the reassembled message to the decompressor.

We see that since a direction is assigned to the fragmentation rules, the other direction is
used to carry protocols information such as acknowledgment or an indication of the missing
fragments.

C/D C/D
F/R F/R9/6

3/4

3/4

9/6

9/6

15/4

15/4

15/4

9/6

FIGURE 3.3 – Compression and Fragmentation combined

3.2 Rules structure
Each SCHC implementation has its own rule format adapted to the programming

language used and the scope of the solution. In this section, we are going to focus on the
OpenSCHC representation which is based on the JSON format.

A Rule is a JSON Object with three keys :

— the key RuleIDRuleID gives the rule ID value,

— the key RuleIDLengthRuleIDLength indicates on how many bits the ruleID is coded,

4. This is not mandatory, another rule may have been selected.
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— the last key gives the nature of the rule. The key can be either :

— Compression Compression, the value is a JSON array containing the packet fields.

— Fragmentation Fragmentation, the value is a JSON Object containing the fragmentation
parameter,

— NoCompression NoCompression, the value is null or an empty array.

For example, a compression rule

{
"RuleID" : 38,
"RuleIDLength" : 8,
"Compression ": [

{"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.TC", "TV": 0, "MO": "ignore", "CDA": "not -sent"},
{"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},
...

{
"RuleID" : 12,
"RuleIDLength" : 6,
"Fragmentation" : {

"FRMode" : "NoAck",
"FRDirection" : "UP"

}

Finally, the NoCompression NoCompressionkeyword is used to describe the mandatory default rule
that SCHC resorts to for sending a packet when no valid compression rule was found to
compress it.

{
"RuleID" : 666,
"RuleIDLength" : 10,
"NoCompression" : []
}

The fragmentation, compression, and no-compression rules share the same rule ID
space : the same rule ID cannot be used for both a compression rule and a fragmentation
rule, for example.

3.3 The Rule Manager
The Rule Manager Rule Managerplays an important role in the openSCHC implementation of SCHC.

It has multiple goals :

— check for the correctness of the rule’s external description,

— add default parameter values, which allows simplifying the rules external description,

— import external rule descriptions into internal storage,
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— display the rules in the store in a format more compact than JSON,

— find in the store a valid rule to compress or fragment an incoming packet with,

— retrieve a rule from the store by its rule ID.

3.3.1 Adding Rules into the Rule Manager
Listing 3.1 shows a simple Python program used to manage the two rules described in

Section 3.2.

Listing 3.1 – rm1.py
1 from gen_rulemanager import *

3 RM = RuleManager ()

5 rule1100 = {
"RuleID" : 12,

7 "RuleIDLength" : 4,
"Compression" : []

9 }

11 rule001100 = {
"RuleID" : 12,

13 "RuleIDLength" : 6,
"Fragmentation" : {

15 "FRMode" : "noAck",
"FRDirection" : "UP"

17 }
}

19

RM.Add(dev_info=rule1100)
21 RM.Add(dev_info=rule001100)

23 RM.Print ()

It first imports the gen_rulemanager module, which defines the RuleManagerRuleManager gen_rulemanagerclass.

The AddAdd gen_rulemanagermethod adds a new rule to the store.

The PrintPrint gen_rulemanagermethod displays the following :
****************************************
Device: None
/-------------------------\
|Rule 12/4 1100 |
|---------------+---+--+--+------------------------------+-------------+----------------\
\---------------+---+--+--+------------------------------+-------------+----------------/
/-------------------------\
|Rule 12/6 001100 |
!=========================+=============================================================\
!^ Fragmentation mode : noAck header dtag 2 Window 0 FCN 3 UP ^!
!^ No Tile size specified ^!
!^ RCS Algorithm: crc32 ^!
\=======================================================================================/

Compression rules normally contain header field descriptors (omitted in this simple
example), and fragmentation rules contain the fragmentation parameters. Note that for the
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fragmentation rule used here, the Rule Manager added some default parameters correspon-
ding to the No-Ack No-Ackbehavior of SCHC.

3.3.2 Adding a Set of Rules
A device should contain a set of rules related to compression and fragmentation. In

openSCHC, the SoR (Set of Rules Set of Rules) is a JSON array. The following program has the same
behavior as the one shown in 3.3.1, but the rules are added with a single method call, using
an array.

Listing 3.2 – rm2.py
1 from gen_rulemanager import *

3 RM = RuleManager ()

5 rule1100 = {
"RuleID" : 12,

7 "RuleIDLength" : 4,
"Compression" : []

9 }

11 rule001100 = {
"RuleID" : 12,

13 "RuleIDLength" : 6,
"Fragmentation" : {

15 "FRMode": "noAck",
"FRDirection" : "UP"

17 }
}

19

RM.Add(dev_info =[rule1100 , rule001100 ])
21

RM.Print ()

3.3.3 Attributing a Set of Rules to a Device
You may have noticed that, in the previous examples, the device was displayed as None.

This is appropriate when SCHC is instantiated on a device, since there is no ambiguity as to
which device the rule set applies to. In contrast, when the SCHC instance resides on the
core network side, each set of rules must be associated with a distinct device.

In openSCHC, the DeviceID DeviceIDis structured as a link technology and an identifier within
that link technology :

— if the link technology is a UDP tunnel UDP tunnel(as in the test platform described in Chapter ??
on page ??), the technology keyword is udp and the identifier is the device-side tunnel
endpoint IP address, followed by the port number used on that endpoint. Therefore, a
full DeviceID would be udp:83.199.24.39:8888 5.

5. If the device is behind a NAT, the IP address used must be the global address assigned to the NAT.
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— for LoRaWANLoRaWAN (not yet implemented), the technology keyword is lorawan and the
identifier is the devEUI.

While being stored in the rule manager via the AddAdd gen_rulemanagermethod, rules can be attributed to a
DeviceID as follows :

RM.Add(device="udp :83.199.24.39:8888", dev_info =[rule1100 , rule001100 ])

Alternately, the following JSON structure could be used :

{
"DeviceID ": "udp :83.199.24.39:8888" ,
"SoR" : [ ..... ]

}

3.3.4 Importing rules from a JSON file
Rules can also be described in a JSON file, in which case the Rule ManagerAdd method

is used with the file argument. For example :

rm.Add(file="icmp.json")

This approach allows for easier management and sharing of rule sets, as they can be
stored in separate JSON files and loaded as needed. It’s particularly useful when dealing
with complex or numerous rule sets, as it keeps the main code clean and allows for easier
version control of the rules. The JSON file would contain the rule definitions in the same
format as we’ve seen earlier, possibly including multiple rules for both compression and
fragmentation. This method of importing rules provides several advantages :

— Separation of concerns : The rules can be managed separately from the code that uses
them.

— Flexibility : Rules can be easily updated or swapped out by changing the JSON file,
without needing to modify the Python code.

— Readability : JSON is a human-readable format, making it easier to review and edit
rule sets.

— Portability : JSON files can be easily shared between different systems or implemen-
tations.

When using this method, it’s important to ensure that the JSON file is well-formed and
follows the expected structure for SCHC rules. The Rule Manager will typically perform
some validation when importing the rules, but it’s a good practice to verify the JSON file’s
correctness before attempting to import it.

It’s important to note that the JSON format described here is specific to the openSCHC
implementation. Other SCHC implementations may use different formats or data structures
to represent and manage rules. To ensure interoperability between different SCHC imple-
mentations, it is necessary to use a standardized format. The IETF has defined such a format
in RFC 9363, which specifies a YANG Data Model for SCHC. This YANG model provides

https://www.rfc-editor.org/info/rfc9363
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a vendor-neutral, implementation-independent way to describe SCHC rules and contexts.
When working across different SCHC implementations or when aiming for broader inter-
operability, it’s recommended to use the YANG Data Model defined in RFC 9363 rather
than implementation-specific formats like the JSON structure used in openSCHC.

3.4 Exercises
Question 3.4.1: Dual rules

It is possible to have the same RuleID for a compression rule and a fragmentation
rule.

— True

— False

Question 3.4.2: RuleID in binary

Give the binary representation of Rule ID 12/5

Question 3.4.3: binary tree

Which rules are compatible with 12/5?

— 3/3

— 13/5

— 24/6

— 26/6

— 12/6



4. Compression

If you’re looking to gain a deeper understanding of SCHC header compression and its
distinctive approach to managing header fields, this chapter will provide valuable insights.

This chapter delves into the topic of header field compression in SCHC and the diffe-
rences it presents compared to standard packet dumps.

4.1 Compression rule
Youtube

SCHC compression is not limited to a specific protocol. SCHC does not establish a
context during transmission and between both ends. The compression takes the generic
notion of fields composing a header in order. Therefore, a compression rule identifies which
field the compression can apply without ambiguities and which kind of encoding SCHC
uses. SCHC compresses datagrams and does not have the notion of flows. SCHC defines
the description of the header information with the knowledge obtained after analyzing the
header field values.

A compression rule contains descriptors to define header information in several lines
representing the header expected in the packet. If the fields in the packet differ from the ones
in the rule, the rule must not apply, and SCHC must look for another rule. A field header
description is in a line of the rule, which has seven descriptors, regrouped in three parts :

https://youtu.be/qfjo-N9L0Hg?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/qfjo-N9L0Hg?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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Each line is divided into 3 parts :

— the field identification

— the comparison method

— if the rule is selected, how the field compression occurs.

4.1.1 Field identification.
Youtube

Field identification is composed of several elements. The first one is a field ID. The
RFC 8724 do not impose each implementation on having the same way to name the fields.
Table 11.2 on page 146 gives some Field IDs for IPv6 and UDP headers. Note that to allow
exchanges of rules, RFC 9363 defines, with a YANG Data Model, some unique identifiers
for these field IDs.

RFC 8724 openSCHC RFC 9363 (YANG DM) Length (bits) Position
IPv6 Version IPV6.VER fid-ipv6-version 4 1
IPv6 Diffserv IPV6.TC fid-ipv6-trafficclass 8 1
IPv6 Flow Label IPV6.FL fid-ipv6-flowlabel 20 1
IPv6 Length IPV6.LEN fid-ipv6-payload-length 16 1
IPv6 Next Header IPV6.NXT fid-ipv6-nextheader 8 1
IPv6 Hop Limit IPV6.HOP_LMT fid-ipv6-hoplimit 8 1
IPv6 DevPrefix IPV6.DEV_PREFIX fid-ipv6-devprefix 64 1
IPv6 DevIID IPV6.DEV_IID fid-ipv6-deviid 64 1
IPv6 AppPrefix IPV6.APP_PREFIX fid-ipv6-appprefix 64 1
IPv6 AppIID IPV6.APP_IID fid-ipv6-appiid 64 1
UDP DevPort UDP.DEV_PORT fid-udp-dev-port 8 1
UDP AppPort UDP.APP_PORT fid-udp-app-port 8 1
UDP Length UDP.LEN fid-udp-length 8 1
UDP checksum UDP.CKSUM fid-udp-checksum 8 1

TABLE 4.1 – Field ID definition in different implementations

For IPv6 headers, the version, traffic class, flow label, upper layer protocol, hop limit,
and payload length are the same as in a standard packet dump. However, when it comes to
addresses, SCHC treats device and application addresses separately and does not follow the
fields in the packet. As a result, the addresses remain constant regardless of who emitted the

https://youtu.be/F7EzCRnIagk?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/F7EzCRnIagk?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc9363
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc9363
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packet. Additionally, SCHC breaks down addresses into two parts : the prefix on 64 bits and
the Interface Identifier (IID) on 64 bits, which streamlines compression and eliminates the
need to write two rules for device and application packets.

This same approach applies to UDP port numbers, which SCHC assigns to the device
and application. The UDP header then continues with the length and checksum fields.

Field Length and Field Position.
Field LengthField Length , Field Position and Direction Indicator are not so important for IPv6 and

UDP since they have a very strict format, but may be useful for other protocols such as
CoAP.

As introduced in table 11.2 on page 146, the Field Length indicates, in bits, the length
of the field. Since IPv6 and UDP have fixed length fields this information is not in that case
that much important/ But, the Field Length could be used to modify the prefix length, if the
prefix length is different of 64.

In the same table, all the fields are tagged with 1 int the Field PositionField Position column. This is
also a specific case for the IPv6 and UDP protocol, where a field appears only once in a
header.

Direction Indicator.
Direction IndicatorDirection Indicator tells to take account of the field regarding its direction. As we saw

for the IPv6 addresses and the UDP port numbers, one host is identified as the Device, and
the other as the Application. Communication between the Device and the Application is in
the up-linkup-link direction and down-linkdown-link in the reverse direction.

A field is tagged as :

— bi-directionalbi-directional , if it appears in both directions.

— up-link, if it appears only in traffic from the Device to the Application.

— down-link, if it appears only in traffic from the Application to the Device.

For IPv6 and UDP, the all field can be tagged bi-directional, since they appears in all
exchanges. The use of device and application addresses instead of source and destination
addresses at the IP level and device and application ports at the UDP level, makes the rule
insensible to direction. Nevertheless, the Hop Limit field may benefit of splitting the traffic
in two directions. Traffic coming from the device does not cross any routers. In the opposite
direction, the number of routers will vary over time.

0000 60 0A 45 F8 00 1F 11 40 20 01 41 D0 03 02 22 00 ‘.E....@ .A...".
0010 00 00 00 00 00 00 13 B3 20 01 41 D0 04 04 02 00 ........ .A.....
0020 00 00 00 00 00 00 3A 86 16 33 81 B9 00 1F 3D 12 ......:..3....=.
0030 62 45 9E F8 3E C5 FF 32 30 32 33 2D 30 34 2D 30 bE.. >..2023 -04 -0
0040 36 20 31 30 3A 31 30 6 10:10
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###[ IPv6 ]###
version = 6
tc = 0
fl = 673272
plen = 31
nh = UDP
hlim = 64
src = 2001:41 d0 :302:2200::13 b3
dst = 2001:41 d0 :404:200::3 a86

###[ UDP ]###
sport = 5683
dport = 33209
len = 31
chksum = 0x3d12

###[ Raw ]###
load = ’bE\\x9e\\xf8 >\\xc5\\xff2023 -04-06 10:10’

Question 4.1.1: IPv6 fields identification.

Considering the packet above, in hexadecimal and disassembled.

What is the value of the IPV6.VER field?

— 4

— 40

— 6

— 60

The direction is down-link, what is the value of the IPV6.DEV_PREFIX field?

— 20 01 41 D0 03 02 22 00

— 00 00 00 00 00 00 13 B3

— 20 01 41 D0 04 04 02 00

— 00 00 00 00 00 00 3A 86

4.1.2 Field Matching.

Youtube

The field matching is based on two criteria, the Target Value (TV) containing the
expected value for that field in the packet, and the Matching Operator (MO) indicating how
the comparison should be done.

The RFC 8724 defines 4 matching operators :

— Ignore Ignore: there is no comparison between the Target Value and the value for that field

https://youtu.be/X49VFF9N0x4?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/X49VFF9N0x4?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc8724
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in the packet.

— EqualEqual : the value in the Target Value must be the same as the one found in that field in
the packet.

— Most Significant Bit (MSB)MSB : This MO takes an argument indicating on how many
bits the comparison between the TV and the value on the field must be done.

— Match-MappingMatch-Mapping : The Target Value contains a list of values, and one of these values
must be equal to the value for that field.

The Target ValueTarget Value by itself is either a non-typed byte string or, for Match-Mapping, an
array of non-typed byte strings. For easier readability, different types may be used. For
example, for better readability, openSCHCopenSCHC allows the use of strings, integers, and even IPv6
addresses.

Question 4.1.2: MSB

What are the bits tested for a MSB of 12 bits and a Target Value of 23628.

— 111000100110

— 101110001001

— 100110100100

— 010001011100

Question 4.1.3: Matching List

The traffic issued from the device and the application may both use IPv6 global
and link-local addresses. What will be the Target Value to describe these device
prefixes ?

A rule can be selected if and only if all the fields in the rule match all the fields in the
packet header. If one Matching Operator fails or if the packet contains some extra fields,
some Field Descriptors in the rule will not be found in the packet, and the rule cannot be
selected.

4.1.3 Compression

If a rule is selected through the matching process described above, compression can
occur. The Compression Decompression Action (CDA) describes how the compression is
performed, forming the residue that directly follows the ID of the rule. The decompression
will do the opposite operation taking the residue and combining it with the Target Value.

The RFC 8724 proposes 7 actions :

https://www.rfc-editor.org/info/rfc8724
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— not-sent not-sent: the value in the field is elided and will be found in the Target Value.

— value-sent value-sent: the value is the field is sent as part of the residue.

— Less Significant Bit (LSB) : the Less Significant Bit which where not part of the MSB
comparison are sent. This CDA is only valuable with the MO MSB.

— mapping-sent mapping-sent: the index 0 in the Target Value where the value of the Field has been
found. The size of the index is the smallest with respect to the number of entries in
the Matching List. For instance, if the Matching List contains 5 entries, the residue
will be 3 bit long.

— compute-length compute-length: The value is not sent, and the receiver will compute it from the data
it receives after decompression.

— compute-checksum compute-checksum: The value is not sent, and the receiver will compute it from the
data it receives after decompression 1.

— devIID devIID: The device Interface Identifier is derived from the layer 2 device address.

— appIID appIID: The application Interface Identifier is derived form the layer 2 application
address 2.

4.1.4 Decompression

Youtube

Decompression uses the same CDA which tells how to combine the Target Value and
the residue. When a SCHC packet arrives :

1. the decompressor identifies the sender and its associated Set of Rules,
2. since the ruleID is organized as a binary tree, the RuleID value and length is easily

extracted.
3. the rule is identified in the Set or Rules which specify the residue format.

4.2 Simple compression rules for openSCHC.
In the openSCHC implementation, a JSON object describes, as an Array, the set of rules

associated with a device. Each element is an object defining the rule. A rule must contain
three keywords :

1. As you notice the description is identical to compute-length, RFC 9363 introduces the concept of
compute-* to regroup these two CDAs.

2. This CDA is less applicable than devIID CDA since the application is usually not located in the core
SCHC and therefore not present in Layer 2 frames.

https://youtu.be/fFHL62MGuMM?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/fFHL62MGuMM?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc9363
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— RuleIDValueRuleIDValue and RuleIDLength. As presented before, a rule ID is composed of
two elements, the Value and the length in bits to store with value.RuleIDLength

— the nature of the rule, though a specific and exclusive key : Compression, No-Compression
or Fragmentation.

The example, listing 4.1, gives an overview of the structure with an empty compression
rule.

Listing 4.1 – Empty compression rule
[

{
"RuleIDValue" : 12,
"RuleIDLength" : 4,
"Compression" : []
}

]

The listing 4.2 on the next page gives an example of an openSCHC IPv6 header
compression rule written in JSON. The array defined by the CompressionCompression key contains all
the Field Descriptors. They are Objects with specific keywords. For readability, openSCHC
does not require all the elements in the Field Descriptors. In our example, the Field Length,
the Field Position and the Field Direction are not present ; openSCHC will fill them with
default values.

The keys used by openSCHC for Field Descriptors are 3 :

— Field IDentifier (FID). This mandatory key indicates the Field ID. Table 11.2
on page 146 gives an overview of some identifiers.

— Field Length (FL) indicates in bits the length of the field. It can be either a positive
integer for fixed length fields or a function for variable length fields (see XXX).

— Direction Indicator (DI) indicates the expected direction of the packet ; it can
be the string UP, DW or BI. By default, a field is considered bidirectional.

— TV indicates the expected value found in the packet. openSCHC allows different
formats, such as integer, strings, or IPv6 addresses and prefixes as shown line 24. The
TV can also be an array of theses values 4.

— MO defines the Matching Operator. OpenSCHC implements MO defined in RFC 8724 :
EQUAL, IGNORE, MSB, MATCH-MAPPING.

— MO.VALMO.VAL for MO MSB, this entry specifies how many bits the comparison will take.

— CDA defines the compression or decompression algorithm. openSCHC implements :
NOT-SENT, VALUE-SENT, LSB, MPPING-SENT, COMPUTE-LENGTH, COMPUTE-CHECKSUM 5.

3. the keys are stored in the gen_parameters.py gen_parameters.pyfile.
4. The value null extends the array length and therefore the residue size.
5. DEVIID and APPIID are not yet implemented.

https://www.rfc-editor.org/info/rfc8724
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Listing 4.2 – IPv6.json

[{
2 "RuleIDValue" : 5,

"RuleIDLength": 3,
4 "Compression": [

{"FID": "IPV6.VER",
6 "TV": 6, "MO": "equal",

"CDA": "not -sent"},
8 {"FID": "IPV6.TC",

"TV": 1, "MO": "equal",
10 "CDA": "not -sent"},

{"FID": "IPV6.FL",
12 "TV": 144470 , "MO": "equal",

"CDA": "not -sent"},
14 {"FID": "IPV6.LEN",

"MO": "ignore",
16 "CDA": "compute -length"},

{"FID": "IPV6.NXT",
18 "TV": 17, "MO": "equal",

"CDA": "not -sent"},
20 {"FID": "IPV6.HOP_LMT",

"MO": "ignore",
22 "CDA": "value -sent"},

{"FID": "IPV6.DEV_PREFIX",
24 "TV": ["FE80 ::/64",

"2001:41 D0 :302:2200::/64"], "MO": "match -mapping",
26 "CDA": "mapping -sent"},

{"FID": "IPV6.DEV_IID",
28 "TV": "::13b3", "MO": "equal",

"CDA": "not -sent"},
30 {"FID": "IPV6.APP_PREFIX",

"TV": ["2001:41 d0 :404:200::/64",
32 "FE80 ::/64"], "MO": "match -mapping",

"CDA": "mapping -sent"},
34 {"FID": "IPV6.APP_IID",

"TV": 2,"MO": "equal",
36 "CDA": "not -sent"},

{"FID": "UDP.DEV_PORT",
38 "MO": "ignore",

"CDA": "value -sent"},
40 {"FID": "UDP.APP_PORT",

"TV": 5680,"MO": "MSB",
42 "MO.VAL": 12, "CDA" : "LSB"},

{"FID": "UDP.LEN",
44 "TV": 0,

"MO": "ignore",
46 "CDA": "compute -length"},

{"FID": "UDP.CKSUM",
48 "TV": 0, "MO": "ignore",

"CDA": "compute -checksum"}
50 ]
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}
52 ]

Question 4.2.1: Residue Length

Considering the rule given listing 4.2 on the preceding page. What is the length of
the residue? What is the size of the SCHC packet (assuming that the data part is 40
byte long)?

Question 4.2.2: Rule

Does the following rule match the packet given page 45 matches the rule given in
listing 4.2 on the facing page.

Question 4.2.3: SCHC packet

Decompress the following up-link SCHC packet a4 6e b1 7a a4 34 90 86 85
00 a.

a. To help you, this is the binary equivalent : 101 00100011 0 1 1101011000101111 0101
01001000 01101001 00100001 00001101 00001010 0000000

4.3 Hands-on
4.3.1 Parsing

Youtube

The Python program pcap_parse.py displays the content of a pcappcap file that contains pcap_parse.py

packets captured on a network. Let us look first at the declaration part :

Listing 4.3 – pcap_parse.py
#!/usr/bin/env python3

2 from scapy.all import *

4 import sys
# insert at 1, 0 is the script path (or ’’ in REPL)

6 sys.path.insert(1, ’../../ src/’)

8 from compr_parser import Parser
from gen_parameters import *

https://youtu.be/WLNkazwYu6E?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/WLNkazwYu6E?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/pcap_parse.py
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10

import pprint

— Line 1 allows a simple execution of the program, if the file has the execution rights 6

it is not necessary to type python3 ./scapy_read.py, typing ./scapy_read.py
will be enough.

— Line 2 imports all the modules and functions defined in scapy scapy. Scapy is complementary
to openSCHC and will help manipulate IP packets 7.

— Lines 4 to 6 add in Python3 the path to find the openSCHC modules. They are stored
in the src directory.

— Lines 8 and 9 import two openSCHC modules. Parser Parsercompr_parser from the module compr_parser
transforms a packet into a Field Description. Module gen_parameters gen_parameterscontains the
parameters declaration used by openSCHC.

— line 11 imports the pprint pprintmodule to offer a more readable display of Python
structures.

# rdpcap comes from scapy and loads in our pcap file
14 packets = rdpcap(’trace_coap.pcap’)

16 parser = Parser ()

— Line 14, the scapy function rdpcap rdpcapopens the pcap file trace_coap.pcap containing
the capture we will analyze.

— Line 16 creates an instance of the openSCHC Parser Parserclass.

18 # Let’s iterate through every packet
for packet in packets:

20 hexdump(packet[IPv6])
packet[IPv6].show()

22

if packet[Ether].src == "fa:16:3e:1e:cc:2c":
24 direction = T_DIR_DW

elif packet[Ether].dst == "fa :16:3e:1e:cc:2c":
26 direction = T_DIR_UP

else: # skipping
28 break

30 print ("Packet␣direction␣", direction)

32 parsed = parser.parse (bytes(packet[IPv6]),
direction ,

34 layers =["IPv6", "UDP"])

6. type chmod +x scapy_read.py
7. It is better to manually install scapy to get the latest version. See https://scapy.readthedocs.io/

en/latest/installation.html.

https://scapy.readthedocs.io/en/latest/installation.html
https://scapy.readthedocs.io/en/latest/installation.html
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pprint.pprint (parsed)

— Line 19, the loop ensures that the scapy structure packet will be contains each of the
packet records stored in the pcap file.

— Lines 20 and 21 display the packet in two different ways 8. The scapy function
hexdumphexdump returns a hexadecimal and ASCII dump of the packet content. On the
contrary, the showshow scapymethod disassembles the packet and displays all fields. The follo-
wing listing gives an example of such a display.

0000 60 07 51 9F 00 20 11 30 20 01 41 D0 04 04 02 00 ‘.Q.. .0 .A.....
0010 00 00 00 00 00 00 3A 86 20 01 41 D0 03 02 22 00 ......:. .A...".
0020 00 00 00 00 00 00 13 B3 81 B9 16 33 00 20 9C 8B ...........3. ..
0030 42 01 9E F8 3E C5 3C 75 73 65 72 2E 61 63 6B 6C B...>.<user.ackl
0040 2E 69 6F 84 74 69 6D 65 .io.time
###[ IPv6 ]###

version = 6
tc = 0
fl = 479647
plen = 32
nh = UDP
hlim = 48
src = 2001:41 d0 :404:200::3 a86
dst = 2001:41 d0 :302:2200::13 b3

###[ UDP ]###
sport = 33209
dport = 5683
len = 32
chksum = 0x9c8b

###[ Raw ]###
load = ’B\x01\\x9e\\xf8 >\\xc5 <user.ackl.io\\x84time ’

— Lines 23 to 30 are specific to SCHC. The pcap file records all the traffic on a specific
network, but SCHC requires to affect a direction (up-link or down-link) to a packet.
To do so, we look at the source MAC address. If the frames originate from the
MAC address given line 23, then the packet is considered as downlink. If the MAC
address is not found, the packet is skipped. The direction is printed when the packet
is recognized.

— Lines 32 to 34 the SCHC parser is called. It takes as arguments the packet to be
parsed (the bytes transform the sketchy structure to a byte array), the direction we just
compute and the layers to be parsed. In this example, only IPv6 and UDP headers are
parsed.

— line 35 displays the result of the parsing. It is a tuple that contains :

— the field description consisting of a Python dictionary where the key is the Field
ID and its position and the value and array with the field content as a byte array
followed by its length.

— remaining data

— a notification, if errors occurs during parsing.

Packet direction UP
({(’IPV6.APP_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00\x13\xb3 ’, 64],

(’IPV6.APP_PREFIX ’, 1): [b’ \x01A\xd0\x03\x02"\x00 ’, 64],
(’IPV6.DEV_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00:\x86 ’, 64],

8. The capture includes the Ethernet frame. So packet[IPv6] limits to IPv6 layers and above, excluding
Ethernet header.
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(’IPV6.DEV_PREFIX ’, 1): [b’ \x01A\xd0\x04\x04\x02\x00 ’, 64],
(’IPV6.FL’, 1): [b’\x07Q\x9f ’, 20],
(’IPV6.HOP_LMT ’, 1): [b’0’, 8, ’fixed ’],
(’IPV6.LEN ’, 1): [b’/’, 16, ’fixed ’],
(’IPV6.NXT ’, 1): [b’\x11 ’, 8, ’fixed ’],
(’IPV6.TC’, 1): [b’\x00 ’, 8],
(’IPV6.VER ’, 1): [b’\x06 ’, 4],
(’UDP.APP_PORT ’, 1): [b’\x163 ’, 16],
(’UDP.CKSUM ’, 1): [b’\xf5\xef ’, 16],
(’UDP.DEV_PORT ’, 1): [b’\x81\xb9 ’, 16],
(’UDP.LEN ’, 1): [b’/’, 16]},

b’B\x03\x9e\xf7 >\xc4 <user.ackl.io\x85other\x05block\xffHLO 009’,
None)

4.3.2 Rule Manager
The next step is to find a rule matching the packet description. The program pcap_match.py-

introduces the Rule Manager Rule Managerto manipulate devices’ rules.pcap_match.py

Listing 4.4 – pcap_match.py
#!/usr/bin/env python3

2 from scapy.all import *

4 import sys
# insert at 1, 0 is the script path (or ’’ in REPL)

6 sys.path.insert(1, ’../../ src/’)

8 from compr_parser import Parser
from gen_parameters import *

10 from gen_rulemanager import RuleManager

12 import pprint

14 # rdpcap comes from scapy and loads in our pcap file
packets = rdpcap(’trace_coap.pcap’)

16

parser = Parser ()
18

RM = RuleManager ()
20 RM.Add(file="ipv6.json")

RM.Print ()

This program derives from pcap_parse.py previously explained. The differences are :pcap_parse.py

— Line 10 to import the class RuleManager RuleManagergen_rulemanager from the module gen_rulemanager.py.

— line 19 to create the instance RM of the RuleManager.

— line 20 to import the ipv6.json rule as defined on listing 4.2 on page 50.

— line 21 to print the rules known by the rule manager. Note that the rule manager add
fields such as Field Length, Field Direction, Field Position. They can be specified in
the JSON file to override the default values.

****************************************
Device: None
/-------------------------\
|Rule 5/3 101 |
|---------------+---+--+--+------------------------------+-------------+----------------\

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/pcap_match.py
https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/pcap_parse.py
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|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 01| EQUAL |NOT -SENT |
|IPV6.FL | 20| 1|BI| 023456| EQUAL |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
|IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |
: . : . :. :. : 200141 d003022200: . : . :
|IPV6.DEV_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |
|IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |
: . : . :. :. : fe80000000000000: . : . :
|IPV6.APP_IID | 64| 1|BI| 0000000000000002| EQUAL |NOT -SENT |
|UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |
|UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |
|UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
\---------------+---+--+--+------------------------------+-------------+----------------/

4.3.3 Rule Matching
The program pcap_match.py continues with rule matching, calling the method FindRuleFromPacketFindRuleFromPacket

RuleManagerfrom the RuleManager object, as specified at lines 42 to 48.

Listing 4.5 – pcap_match.py
# Let’s iterate through every packet

24 for packet in packets:
#hexdump(packet[IPv6])

26 #packet[IPv6].show()

28 if packet[Ether].src == "fa:16:3e:1e:cc:2c":
direction = T_DIR_DW

30 elif packet[Ether].dst == "fa :16:3e:1e:cc:2c":
direction = T_DIR_UP

32 else: # skipping
break

34

print ("Packet␣direction␣", direction)
36

parsed = parser.parse (bytes(packet[IPv6]),
38 direction ,

layers =["IPv6", "UDP"])
40 pprint.pprint (parsed)

42 if parsed [0] != None:
rule = RM.FindRuleFromPacket(pkt=parsed [0],

44 direction=direction ,
failed_field=True)

46

print ("Rule␣for␣packet")
48 pprint.pprint(rule)

This method takes 3 arguments :

— The parsed packet (i.e. the first element of the tuple returned by the parser.

— The direction.

— A debug option failed_fieldfailed_field which displays the matching process and highlights
non-matching fields.
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We can see from the trace that no packets in the pcap file match the rule.
Packet direction DW
({(’IPV6.APP_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00\x13\xb3 ’, 64],

(’IPV6.APP_PREFIX ’, 1): [b’ \x01A\xd0\x03\x02"\x00 ’, 64],
(’IPV6.DEV_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00:\x86 ’, 64],
(’IPV6.DEV_PREFIX ’, 1): [b’ \x01A\xd0\x04\x04\x02\x00 ’, 64],
(’IPV6.FL’, 1): [b’\nE\xf8 ’, 20],
(’IPV6.HOP_LMT ’, 1): [b’@’, 8, ’fixed ’],
(’IPV6.LEN ’, 1): [b’\x1f ’, 16, ’fixed ’],
(’IPV6.NXT ’, 1): [b’\x11 ’, 8, ’fixed ’],
(’IPV6.TC’, 1): [b’\x00 ’, 8],
(’IPV6.VER ’, 1): [b’\x06 ’, 4],
(’UDP.APP_PORT ’, 1): [b’\x163 ’, 16],
(’UDP.CKSUM ’, 1): [b’=\x12 ’, 16],
(’UDP.DEV_PORT ’, 1): [b’\x81\xb9 ’, 16],
(’UDP.LEN ’, 1): [b’\x1f ’, 16]},

b’bE\x9e\xf4 >\xc1\xff2023 -04-06 10:10’,
None)

{’FID ’: ’IPV6.VER ’, ’FL ’: 4, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x06 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.TC’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x01 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
rule 5/3: field IPV6.TC does not match TV=b’01’ FV=b’00’ rlen=8 flen=8 arg=None
Rule for packet
None

By examining the trace, we can see that there is a matching for IPV6.VER field, but the
next field IPV6.TC do not match, therefore rule 5/3 is not selected.

Question 4.3.1: Rule modification

Adapt the rule stored in ipv6.json file (see Listing 4.2 on page 50) to allow for at
least one downlink packet matching.

Looking at the execution trace 4.3.3, we can step by step modify the rule :

— the TV is 1 and the Field Value (FV) is 0 for the Traffic Class IPV6.TC IPV6.TC. The first
adaption is to change the value in the rule.

— By launching the program after the rule modification, we also need to modify the
Flow Label (IPV6.FL IPV6.FL) value to 0xa45f8. The value has to be in decimal in the JSON
file, it corresponds to 673272.

— Then, the DEV.PREFIX prefix must be added or modified to the matching list. We
choose to add it ; this will change the residue size, since 2 bits are now necessary to
code the 3 possible values.

— The DEV.IID must also be changed to ::3a86.

— The IPV6.APP_IID IPV6.APP_IIDneeds also to be changed to ::13b3.

— The same adaption has to be done for the Application address.

— Finally, in the UPD.APP_PORT field, the TV value should be changed to 5680 so that
the 12 MSB match.

This leads to the rule given in Listing 4.6.

Listing 4.6 – ipv6-sol
****************************************

2 Device: None
/-------------------------\
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4 |Rule 5/3 101 |
|---------------+---+--+--+------------------------------+-------------+----------------\

6 |IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |

8 |IPV6.FL | 20| 1|BI| 0a45f8|EQUAL |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |

10 |IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI|------------------------------|IGNORE |VALUE -SENT |

12 |IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |
: . : . :. :. : 200141 d003022200: . : . :

14 : . : . :. :. : 200141 d004040200: . : . :
|IPV6.DEV_IID | 64| 1|BI| 0000000000003 a86|EQUAL |NOT -SENT |

16 |IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |
: . : . :. :. : 200141 d003022200: . : . :

18 : . : . :. :. : fe80000000000000: . : . :
|IPV6.APP_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |

20 |UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |

22 |UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |
|UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|

24 \---------------+---+--+--+------------------------------+-------------+----------------/

We can see that we match half of the packets, which correspond to the downlink
messages. There is no rule that matches the uplink messages.

Question 4.3.2: Bi-directional rule

How to make that rule bidirectional ? You can add a Direction Indicator (key "DI" in
openSCHC format, and a value "UP" or "DW") to force the matching in a specific
direction.

4.4 Hands-on
4.4.1 Let’s compress

We have the packet, we have the rule, so we can have the compression.

Listing 4.7 – pcap_compress.py
#!/usr/bin/env python3

2 from scapy.all import *

4 import sys
# insert at 1, 0 is the script path (or ’’ in REPL)

6 sys.path.insert(1, ’../../ src/’)

8 from compr_parser import Parser
from gen_parameters import *

10 from gen_rulemanager import RuleManager
from compr_core import Compressor

12

import pprint
14

# rdpcap comes from scapy and loads in our pcap file
16 packets = rdpcap(’trace_coap.pcap’)

18 parser = Parser ()
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20 RM = RuleManager ()
RM.Add(file="ipv6 -sol -bi-fl.json")

22 RM.Print ()

24 compress = Compressor ()

26 # Let’s iterate through every packet
for packet in packets:

28 #hexdump(packet[IPv6])
#packet[IPv6].show()

30

if packet[Ether].src == "fa:16:3e:1e:cc:2c":
32 direction = T_DIR_DW

elif packet[Ether].dst == "fa :16:3e:1e:cc:2c":
34 direction = T_DIR_UP

else: # skipping
36 break

38 print ("Packet␣direction␣", direction)

40 parsed = parser.parse (bytes(packet[IPv6]),
direction ,

42 layers =["IPv6", "UDP"])
pprint.pprint (parsed)

44

if parsed [0] != None:
46 rule = RM.FindRuleFromPacket(pkt=parsed [0],

direction=direction ,
48 failed_field=True)

50 print ("Rule␣for␣packet")
pprint.pprint(rule)

52

if rule:
54 SCHC_pkt = compress.compress(rule=rule ,

parsed_packet=parsed [0],
56 data= parsed [1],

direction=direction)
58

print("SCHC␣packet␣in␣hex")
60 SCHC_pkt.display ()

62 print("SCHC␣packet␣in␣binary")
SCHC_pkt.display(format="bin")

Listing 4.7 on the previous page extends the previous program, given Listing 4.5 on
page 55 and introduces the SCHC compression :

— Line 11 imports the module,

— Line 24 creates an instance of the Compressor Compressorcompr_core.py ,

— in lines 53 to 63, if a rule matches the packet description, the compress compresscompress method
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returns the SCHC packet. It takes the rule, the packet description, the remaining data
after the parsing, and the direction.

The result is SCHC_pkt stored in a openSCHC structure called the BitArrayBitArray gen_bitarray.py. This
class helps to manipulate bit-per-bit a binary buffer. Lines 60 and 63 display the content,
respectively, in hexadecimal and binary.

SCHC packet in hex
a81303726c48b3df07d8bfe646064665a60685a606c4062607462600 /219
SCHC packet in binary
101010000001001100000011011100100110110001001000101100111101
111100000111110110001011111111100110010001100000011001000110
011001011010011000000110100001011010011000000110110001000000
01100010011000000111010001100010011000000000/219
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------------------
---------------------------------------

The hexadecimal representation is compact and is followed by the length in bits (/219)
but may be difficult to manipulate and to identify the padding bits at the end.

The binary representation is followed by a sequence of -. They give exactly where the
buffer stop. It is easier to see in this trace that the last 4 bits equal to 0 are padding bits.

Question 4.4.1: SCHC packet

Identify in the trace 10.5 on page 134, the different elements that make up a SCHC pa-
cket (rule ID, residues, data, and padding). You can add the verbose=True argument
when calling the compresson method.

4.4.2 Let’s decompress
With the compressed SCHC packet and the set of rules, we can perform the opposite

operation to recover the header.

Listing 4.8 – pcap_decompress.py
1 #!/usr/bin/env python3
from scapy.all import *

3

import sys
5 # insert at 1, 0 is the script path (or ’’ in REPL)
sys.path.insert(1, ’../../ src/’)

7

from compr_parser import Parser , Unparser
9 from gen_parameters import *
from gen_rulemanager import RuleManager

11 from compr_core import Compressor , Decompressor
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13 import pprint
import binascii

15

# rdpcap comes from scapy and loads in our pcap file
17 packets = rdpcap(’trace_coap.pcap’)

19 parser = Parser ()
Unparser = Unparser ()

21

RM = RuleManager ()
23 RM.Add(file="ipv6 -sol.json")

RM.Print ()
25

compress = Compressor ()
27 decompress = Decompressor ()

29 def show_diff(s1 , s2):
from termcolor import colored

31

if len(s1) != len(s2):
33 print("size␣is␣different")

return
35

differ = False
37 for o, c in zip(s1 , s2):

#print(o, c)
39 if o == c:

print(colored(chr(o), "green"), end="")
41 else:

print(colored(chr(o), "red"), end="")
43 differ = True

print()
45 if differ:

print (s2.decode ())
47

49 # Let’s iterate through every packet
for packet in packets:

51 #hexdump(packet[IPv6])
#packet[IPv6].show()

53

if packet[Ether].src == "fa:16:3e:1e:cc:2c":
55 direction = T_DIR_DW

elif packet[Ether].dst == "fa :16:3e:1e:cc:2c":
57 direction = T_DIR_UP

else: # skipping
59 break

61 print ("Packet␣direction␣", direction)

63 parsed = parser.parse (bytes(packet[IPv6]),
direction ,
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65 layers =["IPv6", "UDP"])
pprint.pprint (parsed)

67

if parsed [0] != None:
69 rule = RM.FindRuleFromPacket(pkt=parsed [0],

direction=direction ,
71 failed_field=True)

73 print ("Rule␣for␣packet")
pprint.pprint(rule)

75

if rule:
77 SCHC_pkt = compress.compress(rule=rule ,

parsed_packet=parsed [0],
79 data= parsed [1],

direction=direction ,
81 verbose=True)

83 print("SCHC␣packet␣in␣hex")
SCHC_pkt.display ()

85

print("SCHC␣packet␣in␣binary")
87 SCHC_pkt.display(format="bin")

89 field_description = decompress.decompress(rule=rule ,
schc=SCHC_pkt ,

91 direction=direction)
print(field_description)

93 SCHC_pkt.display(format="bin")
data = SCHC_pkt.get_remaining_content ()

95 print ("payload:", binascii.hexlify(data))

97 pkt = Unparser.unparse(header_d=field_description ,
data=data ,

99 direction=direction)

101 show_diff(binascii.hexlify(bytes(packet )[14:]) ,
binascii.hexlify(bytes(pkt)))

This programm adds :

— Line 11, the import of the class compr_corecompr_core Decompressorfrom teh compr_core module.

— Line 27 creates an instance of the class.

— Lines 29 to 46 the function show_diffshow_diff will help compare to hexadecimal sequence to
enlighten the differences.

— lines 89 to 91, the decompression method is called. It contains the rule, the SCHC
packet, and the direction. The result is a field description. We can notice that fields
tagged with the compute-*compute-* CDA do not contain values, since at this point it is
impossible to compute the checksum or the length.
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{(’IPV6.VER ’, 1): [b’\x06 ’, 4],
(’IPV6.TC’, 1): [b’\x00 ’, 8],
(’IPV6.FL’, 1): [b’\nE\xf8 ’, 20],
(’IPV6.LEN ’, 1): (’LLLL ’, 16),
(’IPV6.NXT ’, 1): [b’\x11 ’, 8],
(’IPV6.HOP_LMT ’, 1): [b’@’, 8],
(’IPV6.DEV_PREFIX ’, 1): [b’ \x01A\xd0\x04\x04\x02\x00 ’, 64],
(’IPV6.DEV_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00:\x86 ’, 64],
(’IPV6.APP_PREFIX ’, 1): [b’ \x01A\xd0\x03\x02"\x00 ’, 64],
(’IPV6.APP_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00\x13\xb3 ’, 64],
(’UDP.DEV_PORT ’, 1): [b’\x81\xb9 ’, 16],
(’UDP.APP_PORT ’, 1): [b’\x163 ’, 16],
(’UDP.LEN ’, 1): (’LLLL ’, 16),
(’UDP.CKSUM ’, 1): (’CCCC ’, 16)}

— On line 93, the bitbuffer SCHC_pkt is displayed in binary form. This time, the second
line is made up of = and - characters. The - indicates the end of the buffer and the =,
the bits read during the decompression.

101010000001001100000011011100100110110001001000101100111101
111100000111110110001011111111100110010001100000011001000110
011001011010011000000110100001011010011000000110110001000000
01100010011000000111010001100010011000000000/219
===================================-------------------------
------------------------------------------------------------
------------------------------------------------------------
---------------------------------------

— Line 94, the method BitBuffer BitBufferget_reamaining_content extracts the bytes from the bitbuffer and, therefore,
removes the padding bits at the end.

— Lines 97 to 99 generate a packet from its field description and payload.

— Lines 101 and 102 compare the original packet (without the 14 bytes of the Ether-
net header) with the decompress packet. The display is green, indicating that all
compression has not altered bytes.

Question 4.4.2: Compression ratio

In this example, what is the compression ratio of the IPv6/UDP header?

4.5 Destructive compression
In the rule given in Listing 4.2 on page 50, we are sending all unknown fields such as

the IPv6 hop limit or the device UDP port number and we fixed a specific value for the IPv6
Flow label. These values are usually not known when the rule is defined.
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To increase the compression rate, in some specific cases, the decompression may not
recover the initial values.

4.5.1 Hop Limit
The Hop Limit field can be elided, in both directions :

— On the up-link, the device is at one hop of the of the SCHC core which acts as a router
and there is no risk of loop, so the core SCHC can generate a value, for instance 30.

— On the downlink, the value changes depending on the number of routers the packet
will have to cross. But we do not really care for this value. Hop Limit purpose is
to limit the impact of routing loops when the packet is sent to the device. In our
architecture, the device is the next hop. If we set the Hop Limit to 1, the device must
process the packet and cannot forward it.

The decoupling between MO and CDA becomes obvious. If we use the matching
operator ’ignore’, any value is possible, and if we use the CDA ’not sent’, the decompressor
will use the value stored in the Target Value. By setting it to 30 for uplink traffic, the packet
can reach its destination on the Internet, and by setting it to 1 for downlink traffic, the packet
cannot be routed by the device.

Of course, if the device acts as a router, you can choose another value than 1 or send the
Hop Limit field by modifying the rule.

4.5.2 Flow Label
Flow label cannot be guessed when the rule is described, they are chosen dynamically

by the source, to identify a flow and help the packet processing inside the network. RFC
6437 indicates that the value 0 indicates that the packet is not labeled.

Question 4.5.1: Hop Limit

Modify the previous rule to handle the Flow Label and Hop Limit fields as described
in this section. Is the checksum modified?

4.6 Rule description Optimization
This section analyses each header field value and provides different strategies for

describing them in the Rule.
Some field’s values are not defined in the standards and are left open to the implementa-

tion. Most of these fields will take different values and need different Rules.

The choice of Strategy is not arbitrary but rather a result of understanding the specific
application and the hosts’ performance. This knowledge enables informed decisions and
optimizes compression.

https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc6437
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In Chapter 2, a basic description of the header field’s values and the standard definition
enable the possibility to describe some rules. A deep analysis improves the compression’s
performance but implies using more Rules.

4.7 CoAP Rules
The compression of CoAP headers is a little more complex than IPv6 and UDP for

several reasons :

— Some fields, such as Uri-path Uri-path, may have a variable length changing from one packet
to the other,

— Some fields may also be repeated several times in the header, Uri-path and Uri-query Uri-query

are some examples.

— The Options in CoAP make the header format more flexible depending on the appli-
cation.

— The Message format in a CoAP request and a CoAP response is different.

For the latter point, we saw that Direction Indicator Direction Indicatorcan be used to define a specific
format for each direction, and therefore it is possible to define a single rule that handles
CoAP requests and responses 9.

4.7.1 Option description
SCHC considers each option as a field and defines a specific Field ID Field IDas shown in

Table 4.2 on page 67. This description covers the most common fields defined for CoAP.
Note the No-Response No-Responseoption which will play an important role in LPWAN networks.

Generally an option is considered as a single field and which can be repeated several
times. That will be the case for Uri-path or Uri-Query. In the rule, Field Position Field Positionindicates
the instance of that particular field, starting from 1 10.

We can notice from Table 4.2 on page 67, that there is no Field ID for the Payload
Marker Payload Marker(0xFF) used to indicate the end of the option part and the start of the payload. This
element does not carry any information. The list of headers in the rule defines the CoAP
header.

4.7.2 Variable Length
With IPv6 and UDP, the Field Length is well known and never vary from one packet to

another. It was then possible to indicate the length in bits in the rule, and the residue size

9. However, this is not the only possibility, if Devices and Application play both the role of client and
server, another alternative is to define a rule for requests and others for response.

10. The RFC 8724 allows to give position 0 to fields, which means that the position is not important, and
the decompressor selects the order. This can be useful for the Uri-query Uri-queryfields.

https://www.rfc-editor.org/info/rfc8724
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was known by each end.

In CoAP, two types of fields have a variable length :

— tokentoken where the length is specified in the header, we need to avoid incoherence
between the information stored in the Token LengthToken Length field and the length of the token
value itself.

— Most of the options where the length is coded in the byte preceding the value. As we
saw, CoAP developed its own coding of length. Values between 0 and 12 are directly
stored in the preceding byte, for higher length values, special values are used and the
length is stored before the data.

The options processing lightens the compression process of SCHC. It does not work
directly on the packet data but on an abstract representation of a field. The way CoAP codes
the length is not seen by the SCHC compression process.

In openSCHCopenSCHC , the parsing and unparsing processes are responsible for the conversion.

The Field Length can contain a function instead of a specific value :

— tkltkl to indicate that the Token Length is given by the Token Length field.

— varvar to indicate that the length is not known in the rule definition and should be sent
in the residue. This function specifies that the unit is in Bytes and the length on the
residue is coded on 4 bits for values less than 15. Value 15 indicates that the next byte
is used to code the length.

Let us take an example. Suppose that we have to code the element ichthyofauna in an
Uri-path option. Since it has 13 letters, the CoAP coding will be 0x∆d 0x00 0x69 0x63
0x68 0x74 0x68 0x79 0x6f 0x66 0x61 0x75 0x6e 0x61.

The first nibble is the delta from the previous CoAP option. The second nibble d indicates
a length coded on 1 byte, the second byte is this length minus 13, then the characters of the
URI path element.

If this option is declared variable as a rule, the residue will be 0xd6 0x96 0x36 0x87
0x46 0x87 0x96 0xf6 0x66 0x17 0x56 0xe6 0x1_. The sequence is decayed to 4 bits
to introduce the length.

4.8 Hand-on
We are going to include CoAP compression on the capture trace_coap.pcap.

Question 4.8.1: Transactions

How many type of CoAP transactions can you identify?
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Question 4.8.2: Token Size and Value

What is the size and value of the token?

Question 4.8.3: Code

What are the code values, are they related to a direction?

Question 4.8.4: Options

What are the options for the different types of messages.

We choose to create two rules to compress each type of request and their associated
response based on the IPv6 UDP compression we just studied.

Question 4.8.5: CoAP Compression

Define the set of rules (with RuleID 5/3 and 6/3), to compress both IPv6/UDP/CoAP
sessions.

Question 4.8.6: Residue identification

In compress rule, identify the different elements that make up the compression
residue.

Question 4.8.7: Padding

Do these rules (see correction on page 137) introduce padding bits ?

Question 4.8.8: Padding suppression

Propose some solutions to reduce the impact of the padding.
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TABLE 4.2 – Field ID definition in different implementations

https://www.rfc-editor.org/info/rfc8824
https://www.rfc-editor.org/info/rfc9363
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1

In the previous chapter, we saw how to compress and decompress locally packets to
generate SCHC messages. OpenSCHC uses scapy to access the network to receive or send
packets.

In this chapter, we will see :

— how to configure a node to assign an IPv6 to SCHC devices and allow the core SCHC
to process them.

— Set up the state machine to process packets.

— Retrieve packets to be compressed.

— Send decompressed packets on the network.

We will run SCHC on the CORE COREemulator 2 to create a basic topology, as shown in
Figure 5.1 on the facing page.

The system is composed of three virtual machines :

— App located on the regular internet,

— Core located at the boundary between the regular internet and the constrained network,

— Device located on the constrained network.

In the first scenario, the App will ping the Device and get the answer.

1. The integration has to be done, but now, to run the CORE emulator, first start sudo
/opt/core/venv/bin/core-daemon in a shell (root password is SCHCisG00D+), then on another shell,
run core-gui. From core emu open click on File>Open>schc-ping.xml. Start the emulation by clicking
the green arrow. Open a shell on each virtual machine by double clicking on the icon. Change the directory to
/home/openschc/openschc/example/MOOC-2 to get the files.

2. https://coreemu.github.io/core/index.html

https://coreemu.github.io/core/index.html
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FIGURE 5.1 – Simple topology

5.1 Running the scenario
The network configuration is already configured. The Core and the App will be connected

in IPv6. They can be anywhere on the Internet, but for simplicity the both machines will
share the 2001:0:0:1::/64 prefix. The core will have ::14 IID and the App will have
::15 IID.

The Device and the Core are using an IPv4 network and the Device is configured with
10.0.0.20/24 address. The two machines exchange SCHC messages, carried in an IPv4
tunnel.

The aaaa::/64 prefix is allocated to the devices accessible with SCHC. We will allocate
::1 IID to the Device. It does not appear in the configuration, since the openSCHC will
manage the reachability.

To run the scenario, click on the green arrow of the CORE session ; it will turn red to
show that the emulation is running. If you double click on a terminal icon, it will open a
terminal where we can execute Linux commands and run openSCHC. Look at the prompt ;
it will help you to know on which machine it is running.

We will also open a Code Visual Studio window to test openSCHC, the modification
done on the file will be also viewed by the virtual machines.

5.2 First ping
In the App terminal, type :

# ping6 -i 20 aaaa ::1

where -i 20 set the ping interval to 20 seconds and aaaa::1 is the address of the device.
The network is configured to forward the IPv6 packet with aaaa::/64 destination to the
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FIGURE 5.2 – First ping

Core. There is no answer since the device is not directly reachable (cf. Figure 5.2).
Now open a shell on the Core and start tcpdump tcpdumpto look at the incoming traffic :

# tcpdump -lni eth1 ip6
tcpdump: verbose output suppressed , use -v[v]... for full protocol decode
listening on eth1 , link -type EN10MB (Ethernet), snapshot length 262144 bytes
18:04:35.937169 IP6 2001:0:0:1::15 > aaaa ::1: ICMP6 , echo request , id 22514, seq 13, length 64
18:04:41.058065 IP6 fe80 ::200: ff:feaa:3 > 2001:0:0:1::14: ICMP6 , neighbor solicitation , who has 2001:0:0:1::14 , length 32
18:04:41.058107 IP6 2001:0:0:1::14 > fe80 ::200: ff:feaa :3: ICMP6 , neighbor advertisement , tgt is 2001:0:0:1::14 , length 24
18:04:56.416282 IP6 2001:0:0:1::15 > aaaa ::1: ICMP6 , echo request , id 22514, seq 14, length 64
18:05:16.896655 IP6 2001:0:0:1::15 > aaaa ::1: ICMP6 , echo request , id 22514, seq 15, length 64
18:05:18.944325 IP6 fe80 ::200: ff:feaa:3 > ff02 ::2: ICMP6 , router solicitation , length 16

where :

— -l suppresses the buffering and display packets when they arrives,

— -n only display numerical values and

— -i eth1 listen on the eth1 interface for IPv6 traffic (ip6 final argument).

We can see that the IPv6 traffic generated by the App arrives the Core. There is also
some other traffic corresponding to the NDP, also based on ICMPv6.

5.3 Compressing traffic on Core
5.3.1 Get ping request packets

Now, you can run on the Core machine, program ping_packet_descr.py located inping_packet_descr.py

the MOOC-2 MOOC-2directory of the github repository. This program will take the incoming ICMPv6
message and display a packet description 3

Listing 5.1 – ping_packet_descr.py
1 import sys
# insert at 1, 0 is the script path (or ’’ in REPL)

3 sys.path.insert(1, ’../../ src/’)
from compr_parser import Parser

5 from gen_parameters import *

7 from scapy.all import *

9

import pprint
11

3. Note that the parsing is done on a draft version of the specification, and may evolve with time.

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/ping_packet_descr.py
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P = Parser ()
13

def processPkt(pkt):
15 if pkt[Ether].type == 0x86dd and pkt[IPv6].nh == 0x3A: #ICMPv6

pkt_desc = P.parse(pkt=bytes(pkt )[14:] , direction=T_DIR_DW)
17 pprint.pprint(pkt_desc)

19 sniff(prn=processPkt , iface="eth1")

This program :

— From line 1 to 5, openSCHC module are imported ;

— Line 7, scapy module are imported, followed line 10 of the pprint module for a nicer
display of Python structures.

— Line 12, an instance P of the ParserParser compr_parseris created.

— from line 14 to 17, the function processPkt is declared. This function will be called
by scapy when a packet is received. the pkt argument contains the received packet in
the scapy format.

— Line 15 is used to test if the incoming packet is a ICMPv6 messages, first the
ethertype indicates an IPv6 packet and the IPv6 Next Header field tells that the
upper layer is ICMPv6.

— Line 16, the parser is called with the incoming packet, note that the format is
converted from scapy internal representation to a byte array, and the first 14
bytes corresponding to the Ethernet header are skipped. The direction is also
specified ; since we are dealing with traffic coming from the Internet to the
device, it is a downstream traffic.

— Line 17, the variable pkt_desc contains the result of the previous operation. It
consists of the tuple composed of Python dictionary containing all the parsed
fields, remaining data if there is one, and finally and error code.

— Line 19, the link with scapy is done through the function sniffsniff scapy, taking as arguments :

— prnprn which indicate which function to call when a packet is received,

— ifaceiface giving the interface on which the traffic is captured 4.

The program returns the following Packet Descriptions :
({(’ ICMPV6.CKSUM ’, 1): [b’7%’, 16],

(’ICMPV6.CODE ’, 1): [b’\x00 ’, 8],
(’ICMPV6.PAYLOAD ’, 1): [b’@\x00\x00\x00\xfe\x80\x00\x00\x00\x00\x00\x00 ’

b’\x02\x00\x00\xff\xfe\xaa\x00\x02 ’,
160],

(’ICMPV6.TYPE ’, 1): [b’\x88 ’, 8],
(’IPV6.APP_IID ’, 1): [b’\x02\x00\x00\xff\xfe\xaa\x00\x02 ’, 64],
(’IPV6.APP_PREFIX ’, 1): [b’\xfe\x80\x00\x00\x00\x00\x00\x00 ’, 64],
(’IPV6.DEV_IID ’, 1): [b’\x02\x00\x00\xff\xfe\xaa\x00\x03 ’, 64],
(’IPV6.DEV_PREFIX ’, 1): [b’\xfe\x80\x00\x00\x00\x00\x00\x00 ’, 64],
(’IPV6.FL’, 1): [b’\x00 ’, 20],
(’IPV6.HOP_LMT ’, 1): [b’\xff ’, 8, ’fixed ’],
(’IPV6.LEN ’, 1): [b’\x18 ’, 16, ’fixed ’],
(’IPV6.NXT ’, 1): [b’:’, 8, ’fixed ’],

4. If several interfaces are involved, a Python array can be used.
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(’IPV6.TC’, 1): [b’\x00 ’, 8],
(’IPV6.VER ’, 1): [b’\x06 ’, 4]},

b’’,
None)

({(’ ICMPV6.CKSUM ’, 1): [b’|U’, 16],
(’ICMPV6.CODE ’, 1): [b’\x00 ’, 8],
(’ICMPV6.IDENT ’, 1): [b’\xeb\xa6 ’, 16],
(’ICMPV6.PAYLOAD ’, 1): [b’\xf8Z\x8ce\x00\x00\x00\x00\xfd\x04\x0c\x00 ’

b’\x00\x00\x00\x00\x10\x11\x12\x13\x14\x15\x16\x17 ’
b’\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#\$\%\&\’()*+, -./ ’
b’01234567 ’ ,
448],

(’ICMPV6.SEQNO ’, 1): [b’.’, 16],
(’ICMPV6.TYPE ’, 1): [b’\x80 ’, 8],
(’IPV6.APP_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00\x00\x15 ’, 64],
(’IPV6.APP_PREFIX ’, 1): [b’ \x01\x00\x00\x00\x00\x00\x01 ’, 64],
(’IPV6.DEV_IID ’, 1): [b’\x00\x00\x00\x00\x00\x00\x00\x01 ’, 64],
(’IPV6.DEV_PREFIX ’, 1): [b’\xaa\xaa\x00\x00\x00\x00\x00\x00 ’, 64],
(’IPV6.FL’, 1): [b’\x05kH ’, 20],
(’IPV6.HOP_LMT ’, 1): [b’@’, 8, ’fixed ’],
(’IPV6.LEN ’, 1): [b’@’, 16, ’fixed ’],
(’IPV6.NXT ’, 1): [b’:’, 8, ’fixed ’],
(’IPV6.TC’, 1): [b’\x00 ’, 8],
(’IPV6.VER ’, 1): [b’\x06 ’, 4]},

b’’,
None)

Question 5.3.1: ICMPv6 Packets

What is the nature of these two ICMPv6 messages?

We can note that for these two messages, the parser does not return any payload, the
payload is included in the Packet Description with the Field ID ICMPV6.PAYLOAD ICMPV6.PAYLOAD. The
reason is that ICMPv6 is a stub protocol and there is no upper-layer protocol.

5.3.2 Generating rule for ICMPv6 Ping Request
The ping_packet_rule.py will help to define a rule for the Ping Request.ping_packet_rule.py

Listing 5.2 – ping_packet_rule.py
import sys

2 # insert at 1, 0 is the script path (or ’’ in REPL)
sys.path.insert(1, ’../../ src/’)

4 from compr_parser import Parser
from gen_rulemanager import RuleManager

6 from gen_parameters import *

8 from scapy.all import *

10 import pprint

12 P = Parser ()
RM = RuleManager ()

14 RM.Add(file="icmp.json")
RM.Print ()

16

def processPkt(pkt):
18 if pkt[Ether].type == 0x86dd and pkt[IPv6].nh == 0x3A: #ICMPv6

pkt_desc = P.parse(pkt=bytes(pkt )[14:] , direction=T_DIR_DW)
20 if pkt_desc [2] is None: # No parsing error

rule = RM.FindRuleFromPacket(pkt_desc [0], T_DIR_DW , True)

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/ping_packet_rule.py
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22 print (rule)

24 sniff(prn=processPkt , iface=["eth1", "lo"])

The main differences compared to ping_packet_descr.py are located : ping_packet_descr.py

— Line 5 where the Rule ManagerRule Manager module is loaded, and

— Lines 20 to 22, if the parsing returns no error, then the Rule Manager is called to find
an appropriate rule. The last argument (True) shows where the rule matching fails.

Question 5.3.2: Ping Request Compression Rule

Define a compression rule allowing any host on the Internet to ping the device.

n that scenario, the IPv6 prefix and IID of the App have to be sent to the device, other
fields can be elided. In the ICMPv6 packet, the Sequence Number, the Identifier and the
Payload need to be sent.

The following rule icmp.json contains an example of the compression rule.

Listing 5.3 – icmp.json
{

2 "DeviceID" : "udp :10.0.0.20:8888",
"SoR" : [

4 {
"RuleID": 6,

6 "RuleIDLength": 3,
"Compression": [

8 {"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},

10 {"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},
{"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},

12 {"FID": "IPV6.NXT", "TV": 58, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},

14 {"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",
"MO": "equal","CDA": "not -sent"},

16 {"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},
{"FID": "IPV6.APP_PREFIX", "MO": "ignore","CDA": "value -sent"},

18 {"FID": "IPV6.APP_IID", "MO": "ignore","CDA": "value -sent"},
{"FID": "ICMPV6.TYPE", "TV": 128, "MO": "equal","CDA": "not -sent"},

20 {"FID": "ICMPV6.CODE", "TV": 0, "MO": "equal","CDA": "not -sent"},
{"FID": "ICMPV6.CKSUM", "TV": 0, "MO": "ignore","CDA": "compute -checksum"},

22 {"FID": "ICMPV6.IDENT", "TV": 0, "MO": "ignore","CDA": "value -sent"},
{"FID": "ICMPV6.SEQNO", "TV": 0, "MO": "ignore", "CDA": "value -sent"},

24 {"FID": "ICMPV6.PAYLOAD", "TV": 0,"MO": "ignore","CDA": "value -sent"}
]

26 }
]

28 }

In the above example, the IPV6.VERSION IPV6.VERSIONfield is not sent, the value 6 is stored is the
rule. The IPV6.NXT IPV6.NXTfollows the same behavior, since ICMPv6 is expected, the TV is 58.

Note that IPV6.FL IPV6.FLand IPV6.HOP_LMT
IPV6.HOP_LMT

use the ignore/not-sentignore/not-sent combination. During the
rule selection, FL is not taken into account, but during decompression the value stored in the
rule is used. The reason for this is that IPv6 Flow Label (IPV6.FL) can be different from 0
in a ping6 request but a constrained IoT device is not expected to take this field into account.

The IPv6 Hop Limit value cannot be anticipated, it depends on how many routers the
packet travels through, and it may even vary from one packet to the next. In our example,
the rule ignores the incoming value on compression and rebuilds a hop limit value of 64 on

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/ping_packet_descr.py
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decompression. This behavior is valid if the device is assumed to not forward the packet
any further. If the device is indeed an IP router, then the Hop Limit field value must be sent.

The compression of the address fields is a bit trickier : Indeed, the SCHC rule bears no
source or destination address. Instead, SCHC uses device and application fields addresses addresses5,
which map to the source and destination according to the direction of the traffic (uplink or
downlink). The rule description can therefore be made independent of the direction.

OpenSCHC splits the addresses into a 64 bit prefix and a 64 bit IID IID.

In our scenario, the device address is not sent, since the value is known by both the
device and the core SCHC entities. In contrast, we allow any host on the Internet to ping
the device 6 : the source address of the ping request is sent in full to the device, and the
destination address of the ping reply is sent in full to the core (both are subsumed in the
App address in the SCHC rule description).

At the ICMPv6 level, the Type field is elided in a direction-selective fashion : the Echo
Request value (128) is expected downlink. The ICMPv6 Code is expected to be 0 in both
directions.

The identifier (ICMPv6.IDENTICMPv6.IDENT ) and sequence number (ICMPV6.SEQNO
ICMPV6.SEQNO

) are not com-
pressed, they are sent as a residue.

The other fields IPV6.LENGTHIPV6.LENGTH and ICMPV6.CHECKSUM
ICMPV6.CHECKSUM

are not sent, they are recomputed
on the decompression side.

The resulting SCHC packet has the following format :

1 1 0

Rule ID

3 bits

app prefix app iid

64 bits 64 bits

ident

16 bits

seqno

16 bits

data

n.8 bits

Padding

5 bits

Compression Residue

FIGURE 5.3 – ICMPv6 Packet Compressed

The rule ID takes 3 bits, followed by the compression residue residues, and some padding
bits. Note that the SCHC packet contains no data, just a residue that incorporates the ping
payload. Since the Rule ID length is 3 bits long and the rest is an integer number of bytes, 5
bits are needed to byte-align the end of the SCHC packet, as needed by the underlying link
protocol.

5. the same is true for UDP port numbers.
6. This behavior should be prohibited on a real LPWAN network, to conserve resources. Since we are

using an UDP tunnel in our test setup, there is no such issue.
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If we run the program, the Neighbor Discovery messages are filtered, since no rule are
defined for the link local addresses they uses, but the Ping Request matches rule 6/3.
****************************************
Device: udp :10.0.0.20:8888
/-------------------------\
|Rule 6/3 110 |
|---------------+---+--+--+------------------------------+-------------+----------------\
|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |
|IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
|IPV6.NXT | 8| 1|BI| 3a|EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI| ff|IGNORE |NOT -SENT |
|IPV6.DEV_PREFIX| 64| 1|BI| aaaa000000000000|EQUAL |NOT -SENT |
|IPV6.DEV_IID | 64| 1|BI| 0000000000000001| EQUAL |NOT -SENT |
|IPV6.APP_PREFIX| 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|IPV6.APP_IID | 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|ICMPV6.TYPE | 8| 1|BI| 80| EQUAL |NOT -SENT |
|ICMPV6.CODE | 8| 1|BI| 00| EQUAL |NOT -SENT |
|ICMPV6.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
|ICMPV6.IDENT | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.SEQNO | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.PAYLOAD |var| 1|BI| 00| IGNORE |VALUE -SENT |
\---------------+---+--+--+------------------------------+-------------+----------------/
{’FID ’: ’IPV6.VER ’, ’FL ’: 4, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x06 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.TC’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x00 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.FL’, ’FL ’: 20, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.LEN ’, ’FL ’: 16, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: None , ’MO ’: ’IGNORE ’, ’CDA ’: ’COMPUTE -LENGTH ’}
{’FID ’: ’IPV6.NXT ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’:’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.HOP_LMT ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\xff ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.DEV_PREFIX ’, ’FL ’: 64, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\xaa\xaa\x00\x00\x00\x00\x00\x00 ’, ’MO ’: EQUAL ’,

’CDA ’: ’NOT -SENT ’}
rule 6/3: field IPV6.DEV_PREFIX does not match TV=b’aaaa000000000000 ’ FV=b’fe80000000000000 ’

rlen =64 flen =64 arg=None
None
{’FID ’: ’IPV6.VER ’, ’FL ’: 4, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x06 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.TC’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x00 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.FL’, ’FL ’: 20, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.LEN ’, ’FL ’: 16, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: None , ’MO ’: ’IGNORE ’, ’CDA ’: ’COMPUTE -LENGTH ’}
{’FID ’: ’IPV6.NXT ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’:’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.HOP_LMT ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\xff ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.DEV_PREFIX ’, ’FL ’: 64, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\xaa\xaa\x00\x00\x00\x00\x00\x00 ’, ’MO ’: EQUAL ’,

’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.DEV_IID ’, ’FL ’: 64, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: b’\x00\x00\x00\x00\x00\x00\x00\x01 ’, ’MO ’:

’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’IPV6.APP_PREFIX ’, ’FL ’: 64, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: None , ’MO ’: ’IGNORE ’, ’CDA ’: ’VALUE -SENT ’}
{’FID ’: ’IPV6.APP_IID ’, ’FL ’: 64, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: None , ’MO ’: ’IGNORE ’, ’CDA ’: ’VALUE -SENT ’}
{’FID ’: ’ICMPV6.TYPE ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x80 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’ICMPV6.CODE ’, ’FL ’: 8, ’FP ’: 1, ’DI ’: ’BI’, ’TV ’: b’\x00 ’, ’MO ’: ’EQUAL ’, ’CDA ’: ’NOT -SENT ’}
{’FID ’: ’ICMPV6.CKSUM ’, ’FL ’: 16, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’COMPUTE -CHECKSUM ’}
{’FID ’: ’ICMPV6.IDENT ’, ’FL ’: 16, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’VALUE -SENT ’}
{’FID ’: ’ICMPV6.SEQNO ’, ’FL ’: 16, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’VALUE -SENT ’}
{’FID ’: ’ICMPV6.PAYLOAD ’, ’FL ’: ’var ’, ’FP ’: 1, ’DI ’: ’BI ’, ’TV ’: b’\x00 ’, ’MO ’: ’IGNORE ’, ’CDA ’: ’VALUE -SENT ’}
{’RuleID ’: 6, ’RuleIDLength ’: 3, ’Compression ’: [{’FID ’: ’IPV6.VER ’, ’FL ’: 4, ’FP ’: 1, ’DI ’: ’BI’,
...

Question 5.3.3: Rule optimization

Modify the previous rule to allow only the App to ping the device, and limit the
Sequence Number to 4 bits.

Question 5.3.4: Padding suppression

What will be the Sequence Number residue size to avoid padding at the end of the
SCHC message.

5.3.3 The SCHC Machine
In the previous examples, we used several openSCHC functions to parse, find a rule and

apply the header compression. It was good to learn how SCHC works, but the code may be
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simplified by using functions such as schc_send schc_sendprotocol.py , which takes as input a packet, processes
the compression, and sends the SCHC packet to the destination.

In the previous rule, you may have noticed the DeviceID DeviceIDkey. This is a device identifier
that tells the user how to reach the device. In this example, we use an UDP tunnel and the
rest of the device identifier contains the IPv4 address of the tunnel end point and the port
number. In our case, the IPv4 address is 10.0.0.20 and the port number is 8888.

This means that if this rule is selected, the SCHC packet is sent to that destination (cf.
figure 5.4).

SCHC

Core

ping

Application

SCHC

Device

UDP

SCHC packet

Ping Request

FIGURE 5.4 – SCHC core processing a Ping Request from an Application

The following program allows the compression of Ping Request messages.

Listing 5.4 – ping_core.py
1 import sys
# insert at 1, 0 is the script path (or ’’ in REPL)

3 sys.path.insert(1, ’../../ src/’)

5 from scapy.all import *

7 import gen_rulemanager as RM
from protocol import SCHCProtocol

9 from gen_parameters import T_POSITION_CORE

11 # Create a Rule Manager and upload the rules.

13 rm = RM.RuleManager ()
rm.Add(file="icmp.json")

15 rm.Print ()

17 def processPkt(pkt):

19 scheduler.run(session=schc_machine)
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21 if pkt.getlayer(Ether) != None:
e_type = pkt.getlayer(Ether ).type

23 if e_type == 0x86dd:
schc_machine.schc_send(bytes(pkt )[14:] , verbose=True)

25

27 # Start SCHC Machine
POSITION = T_POSITION_CORE

29

schc_machine = SCHCProtocol(role=POSITION)
31 schc_machine.set_rulemanager(rm)

scheduler = schc_machine.system.get_scheduler ()
33

35 sniff(prn=processPkt , iface="eth1")

The principle is the same as the program ping_packet_rule.py, but introduce the ping_packet_rule.py

SCHC machine that will implement the SCHC protocol. The main differences are as
follows :

— Line 8, the class SCHCProtocolSCHCProtocol protocol.pyis imported.

— Line 28, the role of the SCHC instance is specified, as a core, in our case. This will
specifically determine which traffic is upstream or downstream.

— Line 30, an instance of the SCHC protocol is created

— Line 31, the Rule Manager is associated to that machine

— Line 32, the scheduler used by the SCHC Machine is set to the variable scheduler.
The scheduler is needed for fragmentation, either to send periodically the fragments
or to reassemble them.

— Line 35,as in the previous program, the reception of a packet on the interface eth1
calls the function processPkt. This function is a little bit different :

— Line 19, a call to the scheduler allows to execute some events, this is transparent
to the user.

— Line 21 to 31, select only IPv6 packets for compression.

— On line 24, schc_sendschc_send protocol.pytakes the received packet and compresses it. The
verbose argument allows one to trace the compression process.

Running the program on Core gives the following result :
# python3 ping_core.py
****************************************
Device: udp :10.0.0.20:8888
/-------------------------\
|Rule 6/3 110 |
|---------------+---+--+--+------------------------------+-------------+----------------\
|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |
|IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
|IPV6.NXT | 8| 1|BI| 3a|EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI| ff|IGNORE |NOT -SENT |
|IPV6.DEV_PREFIX| 64| 1|BI| aaaa000000000000|EQUAL |NOT -SENT |
|IPV6.DEV_IID | 64| 1|BI| 0000000000000001| EQUAL |NOT -SENT |

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/ping_packet_rule.py
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|IPV6.APP_PREFIX| 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|IPV6.APP_IID | 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|ICMPV6.TYPE | 8| 1|BI| 80| EQUAL |NOT -SENT |
|ICMPV6.CODE | 8| 1|BI| 00| EQUAL |NOT -SENT |
|ICMPV6.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
|ICMPV6.IDENT | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.SEQNO | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.PAYLOAD |var| 1|BI| 00| IGNORE |VALUE -SENT |
\---------------+---+--+--+------------------------------+-------------+----------------/
rule for compression/no-compression not found , abort sending.
rule for compression/no-compression not found , abort sending.
Use compression rule 6/3
protocol.py, schc_send , core_id: None device_id: udp :10.0.0.20:8888 length in bits 623
fragmentation not needed

The verbose argument shows how the different ICMPv6 messages are processed. In
that example, the first two are neighbor discovery messages. Since no rule matches with
these messages and that no no-compression rules are defined in the Set or Rule, the messages
are discarded. The third message is a Ping Echo Request message and can be compressed
with the rule 6/3. The SCHC packet is 623 bits long and does not require fragmentation 7.
The SCHC packet is sent via UDP to 10.0.0.20, port 8888.

A tcpdump running on Core or Device visualizes the SCHC packets.
# tcpdump -lXni eth0
tcpdump: verbose output suppressed , use -v[v]... for full protocol decode
listening on eth0 , link -type EN10MB (Ethernet), snapshot length 262144 bytes
17:22:26.191749 IP 10.0.0.21.23628 > 10.0.0.20.8888: UDP , length 78

0x0000: 4500 006a a349 4000 4011 8311 0a00 0015 E..j.I@.@.......
0x0010: 0a00 0014 5c4c 22b8 0056 2c6f c400 2000 ....\L"..V,o....
0x0020: 0000 0000 2000 0000 0000 0002 a2e6 c026 ...............&
0x0030: 7e70 5be5 1cca 0000 0000 4fd0 1400 0000 ~p[.......O.....
0x0040: 0000 2022 2426 282a 2c2e 3032 3436 383a ..."\$&(* ,.02468:
0x0050: 3c3e 4042 4446 484a 4c4e 5052 5456 585a <>@BDFHJLNPRTVXZ
0x0060: 5c5e 6062 6466 686a 6c6e \^‘bdfhjln

5.3.4 On the Device
The device receives the SCHC packet through the UDP tunnel, which may represent an

LPWAN network. We need to process the SCHC packet to generate an answer (cf. figure 5.5
on the next page) . There are two approaches :

— Process directly the SCHC packet. This method lacks of universality since it is tailored
on the format specified by the rule, but on the other hand, the device does not need to
have a implement a full IPv6 stack.

— Decompress the SCHC packet and process the IPv6 packet. This method is generic,
but needs a full stack implementation.

We are going to focus on the first approach, where the SCHC packet will be directly
manipulated. We also need to expand the rules to take into account the Echo-Reply message.

Echo Reply rule
The only difference between an Echo Request and a Echo Reply message is the Type

field, which contains representative value 128 or 129. Rule 6/3 may be duplicated with the
new type value and a new Rule ID. This can be a good approach if the device generates ping
requests, but in our scenario, the device will only respond to the ping. Therefore, we can

7. The MTU for UDP tunnels is set to 5000 bits.
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FIGURE 5.5 – SCHC on device processing a Ping Request from an Application and replying

use Direction IndicatorDirection Indicator to fix the value of the Type field in terms of whether it is issued by
the Core or sent to the Core.

The rule 6/3 is modified to take into account the direction for ICMPV6.TYPEICMPV6.TYPE .

Listing 5.5 – icmp-bi.json
1 {

"DeviceID" : "udp :10.0.0.20:8888",
3 "SoR" : [

{
5 "RuleID": 6,

"RuleIDLength": 3,
7 "Compression": [

{"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},
9 {"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},

{"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},
11 {"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},

{"FID": "IPV6.NXT", "TV": 58, "MO": "equal", "CDA": "not -sent"},
13 {"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},

{"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",
15 "MO": "equal","CDA": "not -sent"},

{"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},
17 {"FID": "IPV6.APP_PREFIX", "MO": "ignore","CDA": "value -sent"},

{"FID": "IPV6.APP_IID", "MO": "ignore","CDA": "value -sent"},
19 {"FID": "ICMPV6.TYPE", "TV": 128, "DI" : "DW", "MO": "equal","CDA": "not -sent"},

{"FID": "ICMPV6.TYPE", "TV": 129, "DI" : "UP", "MO": "equal","CDA": "not -sent"},
21 {"FID": "ICMPV6.CODE", "TV": 0, "MO": "equal","CDA": "not -sent"},

{"FID": "ICMPV6.CKSUM", "TV": 0, "MO": "ignore","CDA": "compute -checksum"},
23 {"FID": "ICMPV6.IDENT", "TV": 0, "MO": "ignore","CDA": "value -sent"},

{"FID": "ICMPV6.SEQNO", "TV": 0, "MO": "ignore", "CDA": "value -sent"},
25 {"FID": "ICMPV6.PAYLOAD", "TV": 0,"MO": "ignore","CDA": "value -sent"}

]
27 }

]
29 }

SCHC packet manipulation
The following program echos SCHC messages indetified with Rule ID 6/3 correspon-

ding to an Echo Request message.

Listing 5.6 – ping_dev.py
import sys

2 # insert at 1, 0 is the script path (or ’’ in REPL)
sys.path.insert(1, ’../../ src/’)

4 import gen_rulemanager as RM
from gen_parameters import *

6
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8 rm = RM.RuleManager ()
rm.Add(file="icmp -bi.json")

10 rm.Print ()

12 import socket
import binascii

14 import netifaces as ni

16 addr = ni.ifaddresses(’eth0’)[ni.AF_INET ][0][ ’addr’]

18 PORT = 8888
deviceID = "udp:"+addr+":"+str(PORT)

20

print("device␣ID␣is", deviceID)
22

tunnel = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
24 tunnel.bind (("0.0.0.0", PORT)) # same port as in the DeviceID

26 while True:
SCHC_pkt , sender = tunnel.recvfrom (1000)

28 print ("SCHC␣Packet:", binascii.hexlify(SCHC_pkt),
"from", sender)

30 rule = rm.FindRuleFromSCHCpacket(schc=SCHC_pkt , device=deviceID)
if rule: # Echo Request Rule

32 print ("Rule␣{}/{}".format(rule[T_RULEID],
rule[T_RULEIDLENGTH ]))

34 if rule[T_RULEID] == 6 and rule[T_RULEIDLENGTH] == 3:
tunnel.sendto(SCHC_pkt , sender)

36 else:
print ("Not␣the␣Echo␣Request␣rule")

38 else:
print ("rule␣not␣found")

The beginning of the program does not change, SCHC modules are loaded, and then the
Rule Manager loads the rule, then :

— Line 14, the module netifaces is loaded to get the IP address associated the eth0
interface,

— Line 19, the deviceID is built, it is composed of the keywork udp, followed by the IP
address and the post number. This set is needed since the json file containing the rule
indicates the deviceID 8.

— Lines 23 and 24, a socket is created to recieve SCHC messages coming from the
Core/

— Lines 26 to 36 and infinite loop process the incoming SCHC packets :

— Line 25, the program waits for a SCHC packet.

8. the deviceID is needed for the Core since it manages several devices and must know how to reach the
device. Since a device in an LPWAN environment talks only with the Core, deviceID can be avoided.
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— Lines 26 and 27, a message is displayed to show the content of the SCHC packet
and the sender.

— Line 30, a call to FindRuleFromSCHCpacketFindRuleFromSCHCpa-
cket

gen_rulemanager.pygives the rule, and therefore its
ID. Note that the deviceID is needed for that lookup.

— Lines 31 to 35, if a rule is found and corresponds to the Rule ID 6/3, the SCHC
packet is echoed back to the sender.

With this simple manipulation, the SCHC core will receive a SCHC message through
the tunnel. Let us continue and see how the core should process the SCHC packet.

5.3.5 Back to the Core
We now have to take into account the evolution of our architecture. We define a simple

core application that takes an ICMPv6 Echo Request, compresses it, and sends it to the de-
vice. We have after modification of the rule 6/3 to make the value ICMPV6.TYPEICMPV6.TYPE dependent
on the direction, and the device is sending back a SCHC message. These messages arrive in
an IPv4 tunnel on eth0.

The following program takes the SCHC packet from the socket and decompresses it and
forwards the IPv6 to the application.

Listing 5.7 – ping_core1.py
import sys

2 # insert at 1, 0 is the script path (or ’’ in REPL)
sys.path.insert(1, ’../../ src/’)

4

from scapy.all import *
6

import gen_rulemanager as RM
8 from protocol import SCHCProtocol
from gen_parameters import T_POSITION_CORE

10

# Create a Rule Manager and upload the rules.
12

rm = RM.RuleManager ()
14 rm.Add(file="icmp -bi.json")

rm.Print ()
16

def processPkt(pkt):
18

scheduler.run(session=schc_machine)
20

if pkt.getlayer(Ether) != None:
22 e_type = pkt.getlayer(Ether ).type

if e_type == 0x86dd:
24 schc_machine.schc_send(bytes(pkt )[14:])

elif e_type == 0x0800:
26 if pkt[IP]. proto == 17 and pkt[UDP].dport == 0x5C4C:

# got a packet in the socket
28 SCHC_pkt , device = tunnel.recvfrom (1000)
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30 other_end = ’udp:’+device [0]+’:’+str(device [1])

32 origin , full_packet = schc_machine.schc_recv(
schc_packet=SCHC_pkt ,

34 device_id=other_end ,
iface=’eth1’,

36 verbose=True)

38 # Start SCHC Machine
POSITION = T_POSITION_CORE

40

schc_machine = SCHCProtocol(role=POSITION)
42 schc_machine.set_rulemanager(rm)

scheduler = schc_machine.system.get_scheduler ()
44 tunnel = schc_machine.get_tunnel ()

46 sniff(prn=processPkt , iface=["eth0", "eth1", "lo"])

Compared to ping_core.py, there are some small changes :ping_core.py

— Line 14, file icmp-bi.json is loaded in the rule manager,

— Line 46, sniff sniffscapy waits for incoming packet from different interfaces eth0 is needed to
get the packet from the tunnel.

And some code is added in the function processPkt. Lines 25 to 36 process IPv4 packets
coming from the device tunnel :

— Lines 25 and 26, by checking if an IPv4 packet arrives containing an UDP message to
port 0x5C4C,

— Line 28, the recvfrom will not block and returns the SCHC message in the SCHC_pkt
variable.

— Line 30, the address of the sender allows one to create the deviceID which will be
used to identify the Set of Rules.

— Lines 32 to 36, the schc_recv schc_recvprotocol.py function is called with several arguments :

— schc_packet contains the SCHC packet recieved from the tunnel,

— device_id contains the device we just built,

— iface tells on which interface the packet should be sent,

— verbose if set to True allows to display the packet dump sent on the interface.

The function returns the device ID and decompresses the packet in the scapy format.

In the App, the ping starts to give the following results : 9

9. You may experience longer delays in the ping, this is due to the very limited numbers of events received
by the SCHC machine on this emulation environment. To increase the number of events, open a new shell on

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/ping_core.py
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# ping6 -i 20 aaaa ::1
PING aaaa ::1( aaaa ::1) 56 data bytes
64 bytes from aaaa ::1: icmp_seq =97 ttl =255 time =240 ms
64 bytes from aaaa ::1: icmp_seq =98 ttl =255 time =348 ms
64 bytes from aaaa ::1: icmp_seq =99 ttl =255 time =137 ms
64 bytes from aaaa ::1: icmp_seq =100 ttl =255 time =215 ms
64 bytes from aaaa ::1: icmp_seq =101 ttl =255 time =340 ms
64 bytes from aaaa ::1: icmp_seq =102 ttl =255 time =104 ms
64 bytes from aaaa ::1: icmp_seq =103 ttl =255 time =210 ms
64 bytes from aaaa ::1: icmp_seq =104 ttl =255 time =375 ms

the core and type ping 127.0.0.1.



6. Simple CoAP

In the previous chapter, we learned the compression rule by doing a ping between an
Application and a Device. This is not usually the kind of traffic that we expect to see in an
LPWAN network. This will drain batteries and will carry no useful information except that
the device is on.

In this chapter, we are going to define rules that allow one to communicate in CoAP
with a device to exchange information. We will study two scenario :

— The LPWAN scenario. With networks such as LoRaWAN, downlink messages must
be kept as rare as possible due to the duty cycle duty cyclerestrictions imposed on the Radio
Gateway to operate in unlicensed bands. Therefore, traffic must be triggered by the
Device, and acknowledgments cover negative events. In that case, the device acts as a
CoAP client and periodically sends a POST POSTto a server running as an application.

— The underwater scenario. In that scenario, a boat queries the resources of the under-
water sensors when arriving at a specific area. In that case, the Device acts as a CoAP
server ; since we have symmetric communication, with no duty cycle constraints,
acknowledgments are possible.

We will keep the same environment as in the previous chapter and we will use files from
the MOOC-3 directory.

6.1 Network architecture
We keep the same architecture as in in previous chapter :

— A App will run a CoAP server based on the Python module aiocoap aiocoap1. This is the

1. https://github.com/chrysn/aiocoap

https://github.com/chrysn/aiocoap
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regular distribution, and nothing has been modified to deal with constrained networks.

— A Device will act as a client and will send values to the server using the CoAP
protocol. As we did for the first version of the ping compression, the device will not
implement CoAP completely but will deal with SCHC packets directly.

— A Core SCHC between App and the Device will compress and decompress CoAP
messages.

6.2 LPWAN scenario
In this scenario, the device will periodically emit a value captured by different sensors

(e.g. temperature, humidity, and pressure). Each measurement will be a resource identified
by an URI (respectively /temp, /humi, /pres), coded in CBOR. The CoAP client on the
Device, will periodically use a POST to a CoAP server on the App hosts.

To avoid positive acknowledgments, the client will use NONNON confirmable messages and
the CoAP option No-ResponseNo-Response will be set to allow only negative notifications 2.

This leads to traffic, where the messages from the devices will have the format shown in
Table 6.1 on page 87 with the associated MO and CDA values. The residue is 5 bits long.

The rules for compressing the IPv6 header can be based on the rule used for ICMPv6
compression (see the listing 5.5 on page 79), except that the IPv6 address of the App is
known and does not need to be sent as a residue. The IPv6 header is completely elided.

For UDP, the compression will also be complete, since if we suppose that the port
numbers are static, every field can be elided.

Figure 6.2 on page 92 shows the SCHC message, if the ruleID is coded on 3 bits, there
is no padding, and all the headers are compressed in one byte.

0 0 0

Rule ID

3 bits

MID

3 bits

path

2 bits

data

n.8 bits

Compression Residue

FIGURE 6.1 – IPv6/UDP/CoAP compression

Question 6.2.1: new URI

If the Device includes a new sensor, for example, CO2 level, what is the impact on
the description given in the table 6.1 on page 87?

2. This option includes a bitmap indicating which class of notification are allowed : 0b_00010010 allows
suppresses 2 and 5 and keeps 4 notifications classes.
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6.2.1 The Rules

The listing 6.1 presents the two rules 0/3 and 255/8 used in this scenario. The former
will compress the uplink messages from the device containing the POST requests, and the
latter will compress the possible answer from the CoAP server.

Listing 6.1 – lpwan.json
{

2 "DeviceID" : "udp :10.0.0.20:8888",
"SoR" : [{

4 "RuleIDValue" : 0,
"RuleIDLength": 3,

6 "Compression": [
{"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},

8 {"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},

10 {"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},
{"FID": "IPV6.NXT", "TV": 17, "MO": "equal", "CDA": "not -sent"},

12 {"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},
{"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",

14 "MO": "equal","CDA": "not -sent"},
{"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},

16 {"FID": "IPV6.APP_PREFIX", "TV": "2001:0:0:1::/64",
"MO": "equal","CDA": "not -sent"},

18 {"FID": "IPV6.APP_IID", "TV": "::15",
"MO": "equal","CDA": "not -sent"},

20
{"FID": "UDP.DEV_PORT", "TV": 5388,"MO": "equal", "CDA": "not -sent"},

22 {"FID": "UDP.APP_PORT", "TV": 5683,"MO": "equal", "CDA": "not -sent"},
{"FID": "UDP.LEN", "TV": 0, "MO": "ignore", "CDA": "compute -length"},

24 {"FID": "UDP.CKSUM", "TV": 0, "MO": "ignore", "CDA": "compute -checksum"},

26 {"FID": "COAP.VER", "DI": "BI", "TV": 1, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.TYPE", "DI": "BI", "TV": 1, "MO": "equal","CDA": "not -sent"},

28 {"FID": "COAP.TKL", "DI": "BI", "TV": 0, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.CODE", "DI": "BI", "TV": 2, "MO": "equal","CDA": "not -sent"},

30 {"FID": "COAP.MID", "DI": "BI", "TV": 0, "MO": "MSB", "MO.VAL": 13, "CDA": "LSB"},
{"FID": "COAP.Uri -Path", "FP": 1, "DI": "UP",

32 "TV": ["temp", "humi", "pres"],
"MO": "match -mapping","CDA": "mapping -sent"},

34 {"FID": "COAP.Content -Format", "DI": "UP", "TV": 30, "MO": "equal", "CDA": "not -sent"},
{"FID": "COAP.No-Response", "DI": "UP", "TV": 2, "MO": "equal", "CDA": "not -sent"}

36 ]},
{

38 "RuleIDValue" : 255,
"RuleIDLength": 8,

40 "Compression": [
{"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},

42 {"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},

44 {"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},
{"FID": "IPV6.NXT", "TV": 17, "MO": "equal", "CDA": "not -sent"},

46 {"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},
{"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",

48 "MO": "equal","CDA": "not -sent"},
{"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},

50 {"FID": "IPV6.APP_PREFIX", "TV": "2001:0:0:1::/64",
"MO": "equal","CDA": "not -sent"},

52 {"FID": "IPV6.APP_IID", "TV": "::15",
"MO": "equal","CDA": "not -sent"},

54
{"FID": "UDP.DEV_PORT", "TV": 5388,"MO": "equal", "CDA": "not -sent"},

56 {"FID": "UDP.APP_PORT", "TV": 5683,"MO": "equal", "CDA": "not -sent"},
{"FID": "UDP.LEN", "TV": 0, "MO": "ignore", "CDA": "compute -length"},

58 {"FID": "UDP.CKSUM", "TV": 0, "MO": "ignore", "CDA": "compute -checksum"},
{"FID": "COAP.VER", "DI": "DW", "TV": 1, "MO": "equal","CDA": "not -sent"},

60 {"FID": "COAP.TYPE", "DI": "DW", "TV": 1, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.TKL", "DI": "DW", "TV": 0, "MO": "equal","CDA": "not -sent"},

62 {"FID": "COAP.CODE", "DI": "DW", "TV": 132, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.MID", "DI": "DW", "TV": 0, "MO": "ignore","CDA": "not -sent"}

64 ]}
]

66 }

The rule 0/3 totally compresses the IPv6 and UDP headers. This implies a statically
allocated port number on the Device CoAP client. CoAP compression is consistent with the
description given in the table 6.1 on the next page and the SCHC packet displayed 6.2 on
page 92.
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Field Values compression MO CDA
Version 1 Never change, can be elided. equal not-sent
Type NON (1) To avoid acknowledgments at the trans-

port level, non-confirmable messages will
be used.

equal not-sent

Token
Length

0 Token are used, since there is only POST,
it is not necessary to establish a relation
between the request and the response.

equal not-sent

Code POST(2) The device will just produce POST re-
quests.

equal not-sent

Message
ID

0 Messages ID are used to identify a CoAP
message to avoid duplication. Usually the
server memorizes the value for 5 minutes.
Therefore, a message ID must not be repea-
ted during this period. If 3 bits are used, 7
message ID values are possible, the maxi-
mum sending rate is 300/7 = 43 seconds.
If the device sends less than one message
per minute, 3 bits are enough.
The value 0 indicates that the 13 most si-
gnificant bits are set to 0, and only the 3
less significant bits are sent as residue.

MSB(13) LSB

uri-path /temp,
/humi,
/pres

The device will issue one of these 3 URIs,
a matching list allows sending an index of
2 bits.

match-
mapping

mapping-
sent

content-
format

CBOR(60) The resource is always in CBOR format. equal not-sent

no-
response

0000
0010 (2)

Only 4.0x and 5.0x notification should be
sent back by the server. Positive notifica-
tions such as 2 2.04 to acknowledge the
POST are not sent by the server

equal not sent

TABLE 6.1 – CoAP uplink messages
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The Rule 255/8 uses destructive compression. None of the CDAs produce residues. If
selected, this rule generates an SCHC packet containing only the RuleID. On a constrained
device, the nature of the error is not necessary to take a decision. The reception of Rule
255/8 just indicates that an error occurs on the server. In our example, we will change the
sending period to simulate energy preservation.

6.2.2 On the device
The device may remain simple ; we saw that the overhead of IPv6/UDP/CoAP headers

can be reduced to 1 byte for this particular example. It is not necessary, even if it remains
possible, to go back to CoAP manipulations. The SCHC message can also be produced by a
simple code.

The device sends regularly three measurements related to temperature, humidity, and
pressure. The values are coded in CBOR and identified by a specify URL. The class sensor
contains specific information such as the associated URI, the sending period, and the current
value. This class is defined in lines 59 to 81 of dev-lpwan.py.dev-lpwan.py

To ensure different periods for each element, we use an event queue, coded in Python as
a list of tuples composed of the sensor class element and its execution time. From this sorted
list, the first element is taken, and the system waits until the deadline (lines 90 to 104).

coap_send_measurement(sensor.get_value(), sensor.get_uri ())

On line 107, the coap_send_measurement function takes as argument the value and
URI associated with the sensor and sends a compressed SCHC message to the core.

MID = 1
16

tunnel = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
18 tunnel.bind(("0.0.0.0", 8888))

20 def coap_send_measurement(value , uri):
global MID

22

if uri not in KNOWN_URI:
24 print("unknown␣URI", uri)

return None
26

if type(value) is not bytes: # not cbor
28 value = cbor.dumps(value)

30 uri_idx = KNOWN_URI.index(uri)
print ("MID", MID , "URI", uri ,

32 "(index:", uri_idx , ")",
"value", binascii.hexlify(value) )

34

schc_residue = (0x00 & 0b0000_0111) << 5 | \
36 (MID & 0b0000_0111) << 2 | \

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/dev-lpwan.py


6.2 LPWAN scenario 89

(uri_idx) & 0b0000_0011
38

if MID == 0b0000_0111:
40 MID = 1

else:
42 MID += 1

44 schc_pkt = struct.pack("!B", schc_residue) + value
print ("sending:", binascii.hexlify(schc_pkt ))

46 tunnel.sendto(schc_pkt , CORE_SCHC)

The function coap_send_measurement uses a global variable MID (declared line 15) to
contain the current value of the Message ID field. Since in SCHC, we compress this field on
3 bits, the value varies between 1 and 7. Lines 39 to 42 are in charge of this incrementation 3.

KNOWN_URI is a Python list containing all the possible values accepted by the SCHC
rule, in the same position as in the rule. This allows to compute the index uri_idx (line
30).

The schc_residue (lines 35 to 37) is computed by shifting the RuleID (0/3), the 3
less significant bits of the Message ID and the 2 bits of the URI index.

The CBOR is concatenated to the CBOR value (line 44) and sent to the core SCHC
through an UDP tunnel (line 46).

The following listing shows the SCHC messages sent by the device.

[root@device MOOC -3]$ python3 dev -lpwan.py
sleeping 1 sec.
MID 1 URI temp (index: 0 ) value b’14’
sending: b’0414’
sleeping 28 sec.
MID 2 URI pres (index: 2 ) value b’1903ef’
sending: b’0a1903ef ’
sleeping 9 sec.
MID 3 URI humi (index: 1 ) value b’1835 ’
sending: b’0d1835 ’
sleeping 21 sec.
MID 4 URI temp (index: 0 ) value b’15’
sending: b’1015’
sleeping 58 sec.

We will look at the function wait_ack later, let us now focus on how the packet is
proceeded in the core SCHC.

6.2.3 The decompression
The core.py program is very close to the one used for ping compression. The only core.py

difference comes from the use of rule lpwan.json by the Rule Manager.

3. Value 0 for Message ID is forbidden, so it is not possible just to take the less significant bit of a variable.

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/core.py
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After decompression, the core sends the IPv6/UDP/CoAP messages to the App.
[root@core examples]$ tcpdump -nli eth1 udp port 5683
tcpdump: verbose output suppressed , use -v[v]... for full protocol decode
listening on eth1 , link -type EN10MB (Ethernet), snapshot length 262144 bytes
16:29:20.871998 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 18
16:29:28.876123 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 17

6.2.4 aiocoap
In this part, we are going to run a regular CoAP server written in Python 4. The code is

named coap-server.py and is inspired by the server example from the distribution.coap-server.py

Listing 6.2 – coap-server.py
import logging

24 import binascii
import asyncio

26

import aiocoap.resource as resource
28 import aiocoap

30 import cbor2 as cbor

The program imports modules aiocoap and cbor. This defines a class Resource Resourceaiocoap , from
which the sensor_reading class inherit. This class is used to manipulate resources sent
by the Device.

Listing 6.3 – coap-server.py
class sensor_reading(resource.Resource ):

36 async def render_post(self , request ):

38 print ("Request␣URI:", request.get_request_uri ())
print ("Content -format:", request.opt.content_format)

40 print ("Payload:", binascii.hexlify(request.payload ))

42

return aiocoap.Message(code=aiocoap.CHANGED)

aiocoap defines a Python method for every CoAP method, by concatenating the CoAP
method name to the render_ render_aiocoap keyword. Here, line 36, a Python method is declared for the
CoAP method POST 5.

Here, we process only POST; other methods will generate an error notification. Ar-
gument request contains rich information regarding the received CoAP request. The
method displays the full URI from different information in the request. For example :

Request URI: coap ://[2001:0:0:1::15]/ temp

4. aiocoap aiocoapcan be installed through the pip3 command.
5. Possible methods are GET, POST ,PUT, DELETE, FETCH, PATCH, iPATCH, they are defined in the

aiocoap/numbers/codes.py.

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/coap-server.py
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It is also possible to access the CoAP option, through the opt structure. In the example,
line 39, the Content-format option is displayed. It is useful to know this to process the
payload correctly.

In the end, the Python method returns a CHANGED (2.04) indicating that the resource
processing has been performed correctly.

Once the class to process the resource has been defined, it must be linked to the URI,
and the server has to be started. This is done in the main function.

Listing 6.4 – coap-server.py
50 def main ():

# Resource tree creation
52 root = resource.Site()

54 # add resource processing , /proxy is not used here , see comments in generic_sensor ()
root.add_resource ([’temp’], sensor_reading ())

56 #root.add_resource ([’pres ’], sensor_reading ())
root.add_resource ([’humi’], sensor_reading ())

58

# associate resource tree and socket
60 asyncio.Task(aiocoap.Context.create_server_context(root))

62 # let’s go forever
asyncio.get_event_loop (). run_forever ()

64

if __name__ == "__main__":
66 main()

The process is simple. line 52 creates a site object associated with root (/). Then, the
different URI are added to that site (lines 55 to 57). add_resourceadd_resource aiocoaptakes two arguments.
The first is an array that contains all elements of the path 6. The second argument is an
instance of the class (sensor_reading) we previously declared.

In our case, we use the same class to manage all URIs, which means that render_postrender_post

will have to distinguish between them using the uri-path options.

On line 60, the CoAP server is launched, associated with the root site we just created.
By default, the server listens on all interfaces and on port 5683 7.

Finally, the call, line 63 launch the server.

Since /pres has been commented on, the server only knows the URIs /temp and /humi.
Since the CoAP option no_response is set to the value 0x02, all notifications issued by
render_post are filtered. Only the notification 4.04 will be sent back to the device.

6. Here, only one level is needed.
7. Adding a bind argument allows to change de defaults parameters.

asyncio.Task(aiocoap.Context.create_server_context(root), bind=("10.35.131.225",
15386))
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The following capture shows the traffic between the Device and the Application. Not all
the CoAP requests incoming from the Device produce a response message.
# tcpdump -nli eth1 udp port 5683
tcpdump: verbose output suppressed , use -v[v]... for full protocol decode
listening on eth1 , link -type EN10MB (Ethernet), snapshot length 262144 bytes
17:12:52.968024 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 18
17:12:52.971298 IP6 2001:0:0:1::15.5683 > aaaa ::1.5388: UDP , length 4
17:13:02.019044 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 17
17:17:27.107296 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 16
17:17:52.109244 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 18
17:17:52.110915 IP6 2001:0:0:1::15.5683 > aaaa ::1.5388: UDP , length 4
17:18:01.108689 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 17
17:18:28.139665 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 16
17:19:23.196270 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 18
17:19:23.198253 IP6 2001:0:0:1::15.5683 > aaaa ::1.5388: UDP , length 4
17:19:29.230863 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 16
17:20:54.282330 IP6 aaaa ::1.5388 > 2001:0:0:1::15.5683: UDP , length 18
17:20:54.283645 IP6 2001:0:0:1::15.5683 > aaaa ::1.5388: UDP , length 4

Question 6.2.2: 5.0x notifications

Introduce some errors in the render_post method, such as a division by 0. What
will be the notification code ?

6.2.5 Returning errors
In this scenario, the server will only return 4.0x and 5.0x notifications, the simplest

rule will be to match for any of these values and just return the RuleID without any residue.
The rule 255/8 given in the file lpwan.json (cf. Listing 6.1 on page 86) does not send

any residue to the Device. All fields are elided.

1 1 1 1 1 1 1 1

FIGURE 6.2 – IPv6/UDP/CoAP Acknowledgment

A Device receiving that ruleID known that the incoming message was matching the rule.
Therefore, it will be notified that an error occurs, but without knowledge of the error.

Question 6.2.3: Positive Notification

Suppose that an old CoAP server does not recognize the No Response option. What
are the consequences for the Device? How do we solve this ?

6.2.6 Processing errors on the Device
Let us go back to the dev-lpwan.py program on the Device.dev-lpwan.py

if not wait_ack ():
110 event_queue.append ((sensor , int(time.time() + \

sensor.get_period ())))
112 else:

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/dev-lpwan.py
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print ("Long␣sleep␣for", sensor.uri)
114 event_queue.append ((sensor , int(time.time() + 300)))

After sending the request, the Device calls the function wait_ack. If the result is False,
this means that no SCHC packet containing the rule 255/8 has been received. In that case,
the next transmission is scheduled in its regular period (lines 110 and 111).

Otherwise, the device will wait 5 minutes before trying to send that particular resource
again.

48 def wait_ack ():
# wait a SCHC pkt for 1 second

50 readable , _, _ = select.select ([ tunnel], [], [], 1)
if len(readable) == 1: # A message

52 msg = tunnel.recv (1000)
if msg == b"\xff": # ruleID 255/8 = server error

54 print ("Rule␣255/8:␣Server␣Error")
return True

56

return False

This function uses the Linux system call select to bound in time an answer. If a
message is received on the socket used to communication with the core (line 51), then the
Rule ID is tested (line 53), to verify that the rule ID corresponds to error messages.

$ python3 dev -lpwan.py
sleeping 1 sec.
MID 1 URI temp (index: 0 ) value b’13’
sending: b’0413’
sleeping 28 sec.
MID 2 URI pres (index: 2 ) value b’1903e7’
sending: b’0a1903e7 ’
Rule 255/8: Server Error
Long sleep for pres
sleeping 10 sec.
MID 3 URI humi (index: 1 ) value b’182d’
sending: b’0d182d ’
sleeping 21 sec.

We can see that the Device receives a SCHC message in response to the second POST
on the /pres resource. The device goes into long sleep for this URI.

Question 6.2.4: Handling delays

In this scenario, the notification is expected to arrive 1 second after the transmission
of the request. In an LPWAN environment, the downlink message may be delayed
to respect a Duty Circle. Does the system continue to work? How do we solve this
problem?
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6.3 Underwater scenario
In the underwater scenario, the Devices are considered as server and will return a value

when requested by a boat arriving near-by. The files are in the MOOC-4 directory. We will
use a regular CoAP client based on aiocoap and a constrained server.

6.3.1 The basic rules
Let us start with a single rule for uplink and downlink traffic.

Listing 6.5 – underwater.json
1 {

"DeviceID" : "udp :10.0.0.20:8888",
3 "SoR" : [{

"RuleIDValue" : 1,
5 "RuleIDLength": 3,

"Compression": [
7 {"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},

{"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},
9 {"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},

{"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},
11 {"FID": "IPV6.NXT", "TV": 17, "MO": "equal", "CDA": "not -sent"},

{"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},
13 {"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",

"MO": "equal","CDA": "not -sent"},
15 {"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},

{"FID": "IPV6.APP_PREFIX", "TV": "2001:0:0:1::/64",
17 "MO": "equal","CDA": "not -sent"},

{"FID": "IPV6.APP_IID", "TV": "::15",
19 "MO": "equal","CDA": "not -sent"},

21 {"FID": "UDP.DEV_PORT", "TV": 5683,"MO": "equal", "CDA": "not -sent"},
{"FID": "UDP.APP_PORT", "MO": "ignore", "CDA": "value -sent"},

23 {"FID": "UDP.LEN", "TV": 0, "MO": "ignore", "CDA": "compute -length"},
{"FID": "UDP.CKSUM", "TV": 0, "MO": "ignore", "CDA": "compute -checksum"},

25
{"FID": "COAP.VER", "DI": "BI", "TV": 1, "MO": "equal","CDA": "not -sent"},

27 {"FID": "COAP.TYPE", "DI": "DW", "TV": 0, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.TYPE", "DI": "UP", "TV": 2, "MO": "equal","CDA": "not -sent"},

29 {"FID": "COAP.TKL", "DI": "BI", "TV": 2, "MO": "equal","CDA": "not -sent"},
{"FID": "COAP.CODE", "DI": "DW", "TV": 1, "MO": "equal","CDA": "not -sent"},

31 {"FID": "COAP.CODE", "DI": "UP", "MO": "ignore","CDA": "value -sent"},
{"FID": "COAP.MID", "DI": "BI", "TV": 0, "MO": "ignore", "CDA": "value -sent"},

33 {"FID": "COAP.TOKEN", "DI": "BI", "TV": 0, "MO": "ignore", "CDA": "value -sent"},
{"FID": "COAP.Uri -Path", "FP": 1, "DI": "DW",

35 "TV": ["temp", "humi", "pres"],
"MO": "match -mapping","CDA": "mapping -sent"},

37 {"FID": "COAP.ACCEPT", "DI": "DW", "TV": 30, "MO": "equal", "CDA": "not -sent"},
{"FID": "COAP.Content -Format", "DI": "UP", "TV": 30, "MO": "equal", "CDA": "not -sent"}

39 ]}
]

41 }

This rule uses Directional Indicator Directional Indicatorto obtain different residues regarding the direction.
As shown in figure 6.3.
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FIGURE 6.3 – IPv6/UDP/CoAP downlink compression

We consider a regular CoAP client based on aoicoap, without any particular settings.
The residues are the following :
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— The UDP port on 16 bits. If the server port is well-known, the client will select an
available port number. There is no way to guess the value that should be sent to the
device that will echo it.

— The message ID on 16 bits. As for the UDP port, the Message ID can have any value.
aoicoap will select a different value for each transaction, so the Message ID has to be
sent integrally to the device.

— The Token value on 16 bits, aiocoap sends by default a token on two bytes. This value
is sent to the device. Regarding the scenario, since the device answers immediately,
the token is redundant with the message ID.

— The index of requested URI on 2 bits, pointing to the URI.

Since the Rule ID is on 3 bits and the URI index on 2 bits, this compression introduces
3 bits of padding at the end of the SCHC message.

The uplink message has a slightly different format. The device may respond to a GET
request with a 2.05 message containing the requested resource or with an error message.
Therefore, the CoAP Code must be added to the answer, as shown in Figure 6.4. Note that
is the case of an error message, the data are empty.
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FIGURE 6.4 – IPv6/UDP/CoAP uplink compression

The Core uses this rule as usual in the core.py program. core.py

6.3.2 The application client
The following program allows the client running on App to query for two resources : the

/temp and the /humi. The former returns a value with the 2.05 notification, and the latter
returns the 4.04 error notification. These queries are performed every 3 seconds.

Listing 6.6 – coap-client.py
import logging

12 import asyncio
import random

14

import time
16

from aiocoap import *
18

logging.basicConfig(level=logging.INFO)
20

https://github.com/ltn22/The-book-of-SCHC/blob/main/Programs/core.py
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async def main ():
22 protocol = await Context.create_client_context ()

24 if random.randint(0, 10) % 3 == 0: # wrong URI
request = Message(code=GET , uri=’coap ://[ aaaa ::1]]/ humi’)

26 else: #right URI
request = Message(code=GET , uri=’coap ://[ aaaa ::1]]/ temp’)

28

try:
30 response = await protocol.request(request ). response

except Exception as e:
32 print(’Failed␣to␣fetch␣resource:’)

print(e)
34 else:

print(’Result:␣%s\n%r’%( response.code , response.payload ))
36

if __name__ == "__main__":
38 while True:

asyncio.run(main ())
40 time.sleep (3)

6.3.3 The device server
The server on the device is also quite simple ; we will directly deal with SCHC packets

and avoid the decompression.

Listing 6.7 – dev-server.py
from re import A

2 import socket
import binascii

4 import random
import cbor2 as cbor

6

import sys
8

# insert at 1, 0 is the script path (or ’’ in REPL)
10 sys.path.insert(1, ’../../ src/’)

12 import gen_bitarray as ba

14 tunnel = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
tunnel.bind((’0.0.0.0 ’, 8888))

16

while True:
18 data , addr = tunnel.recvfrom (1500)

print (binascii.hexlify(data))
20

schc_msg = ba.BitBuffer(data)
22

ruleID=schc_msg.get_bits (3)
24
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if ruleID == 1: # rule 1/3
26 app_port = schc_msg.get_bits (16)

mid = schc_msg.get_bits (16)
28 token = schc_msg.get_bits (16)

uri_idx = schc_msg.get_bits (2)
30

uri = ["temp", "humi", "pres", None][ uri_idx]
32

print(app_port , mid , token , uri_idx , uri)
34

schc_resp = ba.BitBuffer ()
36 schc_resp.add_bits (0b0000_0001 , nb_bits =3) # ruleID

38 if uri == "temp":
schc_resp.add_bits(app_port , nb_bits =16) # app port

40 schc_resp.add_bits (0b010_00101 ,nb_bits =8) # 2.05
schc_resp.add_bits(mid , nb_bits =16) # Message ID

42 schc_resp.add_bits(token , nb_bits =16) # Token

44 data = cbor.dumps(random.randint (10, 100))
schc_resp.add_bytes(data)

46

else: # 4.04 not found
48 schc_resp.add_bits(app_port , nb_bits =16) # app port

schc_resp.add_bits (0b100_00100 ,nb_bits =8) # 4.04
50 schc_resp.add_bits(mid , nb_bits =16) # Message ID

schc_resp.add_bits(token , nb_bits =16) # Token
52

tunnel.sendto(schc_resp.get_content (), addr)

The program opens a socket to communicate with the Core and starts an infinite loop on
line 17 to receive requests from the clients.

To facilitate the manipulation of SCHC packets that are bit-aligned, we use openSCHC
BitBufferBitBuffer gen_bitarray:

— Line 23 reads the ruleID, since we have a single rule, there is no ambiguity on the
size. The method rr eads 3 bits from the BitBuffer.

— Line 24 checks if its the correct rule, then

— Lines 26 to 29 store in variables the different residue imposed by rule 1/3.

— On lines 35 and 36, the SCHC response starts to build by inserting the rule ID into the
schcrespBitBu f f er.Line38testsi f theURIisknown(/temp).T heSCHCresponsewilldi f f erregardingtheresult.

—— Lines 39 to 45 the posivite notification to the GET request (code 2.05) is added to
the response BitBuffer, including the data represented here by a random number
converted in CBOR.

— Lines 48 to 51 the negative notificationn (4.04) is added to the BitBuffer.

— Line 53 sends the SCHC message to the Core.
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6.3.4 Several Optimization
We defined a generic rule to handle CoAP traffic. In this section, we are going to modify

this rule to reduce bandwidth.

Question 6.3.1: 2 rules

The underwater.json Set of Rules (cf. page 94) contains a single rule used bidi-
rectionally to compress request and response. Modify this Set of Rules, to handle
specifically the notification errors.

What is the impact on traffic?
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Youtube

Fragmentation is a mandatory step for LPWAN networks. The maximum payload (or
Maximum Transmission Unit) is about 50 bytes in Europe and 11 in the US. Sigfox MTU
is between 8 and 12 bytes. This could be enough to send a value, but some messages are
larger and RFC 8200 specifying IPv6 imposes that messages of 1280 bytes must be at least
carried by a Layer 2 1.

In fact, fragmentation is a common thing in networks and can be found at different
levels, for instance :

— IP allows to fragment to large UDP messages, natively in IPv4 and through extensions
in IPv6,

— 6LoWPAN includes a fragmentation header to transport larger IPv6 packet than
allowed by protocols such as IEEE 802.15.4.

— CoAP, through the Blocks options, allows the sender to cut a resource in small part.
The requester will have to request individually each part.

None of these behavior are optimal in an LPWAN environment. In IPv6 or 6LoWPAN
fragmentation, none of the fragments is acknowledged, so if a fragment is lost, the entire

1. this lower bound is impose to limit the impact of an attack on path MTU, a router can refuse to forward
a too large packet and send back by ICMPv6 the maximum size it expects. If very small values are allowed,
the performance of the network will be reduced.

https://youtu.be/vRpFzMJCUkE?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/vRpFzMJCUkE?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://www.rfc-editor.org/info/rfc8200
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packet is lost. On the other hand, in CoAP, each fragment is acknowledged, creating a
bidirectional traffic, incompatible with some LPWAN technologies which drastically limit
the downlink channel and the extra traffic may also drain the battery faster.

SCHC in RFC 8724 defines three fragmentation modes :

— No acknowledgments (NoAck NoAck) : this mode is unidirectional, The sender sends its
fragment one by one and adds to the last one a Reassembly Check Sequence (RCS)
that allows the receiver to detect if no fragment has been lost.

— Ack Always (AA AA) : The message to be fragmented is divided into several windows.
Each window must be acknowledged by the receiver to send the next one. The
acknowledgment messages contains a bitmap indicating which fragments are missing
in the window. As for NoAck, the last fragment contains an RCS to validate the
message.

— Ack on Error (AoE AoE) : The message is also divided into windows, but the receiver
responds by acknowledging only if some fragments are missing in the window. Only
the last fragment must be acknowledged to inform the sender that the receiver received
the full message.

7.1 Rules
As for compression, rules play an important role in fragmentation. We saw with com-

pression that rules are only shared by two entities. The same is true for fragmentation, but
this time they contain fragmentation parameters on which both ends must agree. Usually,
compression and fragmentation share the same Rule ID space, so a message which does not
need to be fragmented can be directly sent.

If compression rules are designed to be bidirectional, then it is not the case for fragmen-
tation rules for which a direction must be specified. The rule used in the other direction is
a synonym of acknowledgment. In LPWAN uplink and downlink do not share the same
characteristic, therefore, a different fragmentation algorithm or at least different parameters
can be applied in each direction. Figure 7.1 on the facing page illustrates the combination
of compression and fragmentation rules.

Figure 7.1 on the next page illustrates the combination of compression and fragmentation
rules. A first packet is compressed using rule 1/8 and send directly to the receiver. The
second packet is compressed with rule 2/8 but the result has to be fragmented. Rule 3/8 is
used to indicate the fragmentation mode and the fragmentation position. The same rule ID
is used to acknowledge the sequence.

The receiver replies, and its answer may also be compressed with rule 2/8 and this time
fragmented by rule 4/8 which requires no acknowledgment.

In OpenSCHC, a fragmentation rule is defined with the Fragmentation key followed by
a JSON Object containing at least the fragmentation mode and the fragmentation direction

https://www.rfc-editor.org/info/rfc8724
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FIGURE 7.1 – Compression and Fragmentation

as shown in the Listing 7.2 on page 105.

Listing 7.1 – Simple fragmentation rule
...

},{
"RuleID" : 4,
"RuleIDLength" : 8,
"Fragmentation" : {

"FRMode ": "NoAck",
"FRDirection ": "UP"

}
}

We will explore various modes of fragmentation, which will assist in presenting pro-
gressively all the relevant fields and terminology associated with fragmentation.

7.2 No Ack
Youtube

There is no acknowledgment in this mode, the sender sends fragments, and the receiver
checks if all the fragments are received before delivering the reassembled message to the
decompression layer. This leads to two kinds of SCHC fragments :

— the All-0 2 fragments presented in Figure 7.2 on the next page is used for all the

2. The name comes from the fact that all bits in the FCN are set to 0, even if there is only one bit in this

https://youtu.be/vRpFzMJCUkE?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
https://youtu.be/vRpFzMJCUkE?list=PLwy4KbYJoKLWEDPzFIDBUNeQM1D2BYwK_
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fragments but the last. It is composed of the ID of the rule that points to a No Ack
rule, followed by a Fragment Compressed Number field on 1 bit and set to 0. The
rest of the fragment contains a part of the original message. Note that the payload
size is in bit and is not aligned to bytes. But in general layer 2 transports bytes, so the
SCHC Fragmentation Header and the fragment payload have to be aligned on a byte
boundary 3

For example in Figure 7.2, the rule ID is 1 bytes, the FCN is 1 bit, if the MTU is 12
bytes, 87 bits can be sent.

— The last fragment, called All-1, depicted in Figure 7.3differs for the All-0 in several
ways :

— The FCN value is set to 1,

— A Reassembly Check Sequence is added at the end of the SCHC header. The
size and the algorithm can be specified, but RFC 8724 defines the default value
with the Ethernet CRC. The sender takes the original sequence and computes
the CRC, the receiver concatenates the received fragments, and performs the
same computation. If the result differs from the one sent, then some fragments
are discarded or received in the wrong order.

— padding paddingmay be introduced at the end of the last SCHC fragment. Since header
compression residues are not bit aligned, as well as rule ID and SCHC fragmen-
tation header, the chance to not reach a byte boundary on the last fragment is
high. In any case, the padding may exceed 7 bits. See Section 7.2.1 on the facing
page on padding management for more explanations.

0 0 0 0 0 1 0 0

Rule ID

8 bits

0

FCN

1

SCHC Fragment Header

Fragment Payload

x bits

FIGURE 7.2 – All-0 SCHC Fragment in No-Ack mode

In OpenSCHC, the Reassembly Check Sequence (RCS) field corresponds to the result
of using the CRC32 algorithm as recommended by RFC 8724, calculated on the full SCHC
packet (after reassembly) concatenated with the padding bits. It is possible to specify some
other RCS algorithm, for example, in Sigfox Sigfox, RCS can be the number of fragments in the
last window. This limits the fragmentation header size, but weakens the error detection,
especially if L4 checksum is removed during the compression phase.

example.
3. To be more generic, RFC 8724 uses L2 Word L2 Wordas a transmission unit. We will use the term byte to

simplify.

https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
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FIGURE 7.3 – All-1 SCHC Fragment in No-Ack mode

7.2.1 Padding management
One nice feature of SCHC is that it avoids carrying the SCHC message length in the

header and that it removes padding just through simple mathematical operations.

Headers payload

comp. payload
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Headers payload

FIGURE 7.4 – Padding management

Figure 7.4 represents the compression / decompression and fragmentation / reassembly
processes from the memory perspective and more particularly alignment in bytes (or more
precisely on L2-word).



104 Chapitre 7. Fragmentation

Before compression, the packet is aligned in memory. The header is a multiple of bytes
as well as the payload. After compression, the SCHC Header composed of the Rule ID and
compression residues may lose this alignment. The payload remains a multiple of bytes.

This SCHC message is fragmented. Each fragment is composed of a SCHC fragmenta-
tion header and a payload. The SCHC fragment is a multiple of bytes, but the payload is not
aligned on bytes. The last fragment (All-1) may not have enough remaining bits to have a
size multiple of bytes, therefore some padding bits (represented in black on the figure must
be added).

These padding bits are added to the SCHC message when the receiver proceeds to
reassembly. That is why they must be included in the RCS computation 4.

After decompression, the header recovers its alignmen and the padding bits are easily
eliminated.

7.2.2 Impact of FCN size

If Layer 2 is changing the packet order, it may be useful to increase the FCN size.
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FIGURE 7.5 – All-0 SCHC Fragment in No-Ack mode with larger FCN field

Figure 7.5 shows a No Ack packet with an extended FCN, here on 3 bits. FCN numbers
are sent in decreasing order. The maximum value where all bits are set to 1 is reserved to
indicate the end of the fragmentation. In this example, the FCN size in coded on 3 bits, so
the maximum value for FCN is 6 going down to 0. Value 7 as an All-1 indicates the end of
the fragmentation and that an RCS follows the header, as shown in Figure 7.6 on the next
page.

RFC 8724 defines M as the size in bits of the FCN field. The maximun FCN value is
therefore 2M −2 and for the All-1 the FCN value is 2M −1. The values from 2N −2 to All-0
or All-1 will define a window 5.

In OpenSCHC, the key FCNSize FCNSizemust be added to the fragmentation parameters. By
default for NoAck the size is 1 bit.

4. We will see later, that in some cases this reassembled message with the padding may not be a multiple
of bytes. But most of the CRC library assume that the sequence is a byte string, so some extra zero bits may
be added for this purpose.

5. Should the window exceed a manageable size, such as when a device is limited to storing 100 fragments,
N is set to 7, and a new rule parameter named WINDOW_SIZE WINDOW_SIZEas specified in the standard is set to 99.

https://www.rfc-editor.org/info/rfc8724
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FIGURE 7.6 – NoAck with FCN

Listing 7.2 – Simple fragmentation rule
...

},{
"RuleID" : 4,
"RuleIDLength" : 8,
"Fragmentation" : {

"FRMode ": "NoAck",
"FRDirection ": "UP"
"FCNSize ": 3,

}
}

7.2.3 Conclusion

To summarize, NoAck is a straightforward mechanism that operates without needing
receiver feedback. It is suitable for uplink fragmentation in certain reliable networks. During
transmission, if the L2 MTU varies, the fragment will adjust accordingly. However, this
mechanism is unsuitable for transmitting critical information, like alarms, especially when
there is a high error rate.

Question 7.2.1: FCN size

What will be the maximum FCN value if this field is coded 4 bits ? What will be the
All-1 value of the FCN?
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Question 7.2.2: Packet lost

What append if the All-1 fragment is lost ?

7.3 Hands-on No Ack

7.4 Dtag
Occasionally, multiple fragmentation rules are required to manage multiple packets

simultaneously. A potential solution is to establish multiple identical fragmentation rules
that vary solely by their rule ID. However, this approach complicates the selection of rules.
To distinguish between multiple datagrams that utilize the same fragmentation rule, the
Datagram Tag (DTAG) was developed. The dimension of this field is determined by the rule
implementer 6.

Given that DTAG extends the Rule ID, it directly succeeds it as shown in Figure 7.7.

0 0 0 0 0 1 0 0

Rule ID

10 bits

- -

DTAG

T = 2

- - -

FCN

N = 3

SCHC Fragment Header

Fragment Payload

x bits

FIGURE 7.7 – DTAG on a NoAck fragment.

7.5 Ack Always
Ack Always is based on a sliding window, which must be acknowledged. In No Ack,

we have seen that FCN are decreasing. In fact, the All-0 fragment masks the end of the
windows. In Ack Always, windows are numbered on 1 bit and, so have alternatively value 0
and 1.

Upon receiving an All-0 fragment, the receiver is required to confirm the entire window
by sending a bitmap that shows which fragments have been received within that window. If
this matches the window sent by the sender, the process moves to the subsequent window.

Thus, the format of the fragment header should incorporate a window field of one bit
length, as illustrated in Figure 7.8 on the next page.

A fragmentation rule is directional ; hence, the reverse direction is employed to acknow-
ledge the fragment and the structure varies. Two formats for acknowledgment exist : one
incorporates a bitmap, and the other, used in the final window, simply confirms that the RCS
is correct, indicating successful message reception. The C bit distinguish these two formats :

6. noted T in RFC 8724.

https://www.rfc-editor.org/info/rfc8724
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FIGURE 7.8 – Ack Always Fragment Format.

— C = 0 a bitmap follows, used in all All-0 windows and when the RCS is wrong on the
All-1 windows,

— C = 1, only used in the All-1 window, the reception is successful, no need for bitmap.

.
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Window
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FIGURE 7.9 – Ack Always Ack Formats.

Figure 7.9 gives these two formats when the FCN field is 3 bits long. The numbers
represent the acknowledged fragment (0 the fragment has not been received). The rightmost
bit, represented in the figure by an A is for All-0 or All-1.

Before sending, the bitmap is also compressed to reduce its size by removing the bytes
equal to 0xFF after the last error or padding bits (not represented in the figure) may be
added to fit the byte boundary.

7.5.1 Sliding Window
Figure 7.6 on page 105 depicted a NoAck exchange in which the FCN rolled back to

its highest value when it reached All-0. In the Ack Always scenario (refer to Figure 7.10
on the following page), along with a window number, the transmission stops following the
emission of the All-0.

This example shows a successful exchange with no losses. Note that in the last window,
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FIGURE 7.10 – NoAck with FCN

the All-1 window is not full, but the RCS allows the receiver to verify that no packet was
lost.

7.5.2 Missing fragment
In this subsequent illustration, Figure 7.11 on the next page, there is a loss of some

fragments. Consequently, the bitmap shows the absent fragments, prompting the sender to
send them again. Observe that the final bitmap is incomplete ; any bit set to 0 signifies either
a missing or a non-existent fragment. Should the sender fail to recognize a lost fragment
and the RCS proves incorrect, the transmission is deemed compromised, leading to the
termination of the fragmentation process.

7.5.3 Bitmap Request
Transmission errors are also possible in All-x fragments, which are more sensitive

compared to others due to their ability to elicit a response from the receiver. The loss of the
acknowledgment is comparable. The conventional solution involves implementing a timer
on the sender’s side, which upon expiration prompts the sender to request a bitmap. Rather
than creating a new message, SCHC uses an empty All-0 fragment.

In Figure 7.12 on page 110, a SCHC message is divided into four fragments. It fits
within a single window, and the final fragment is an All-1. This segment goes missing,
leading to no acknowledgment for the sender. Upon expiration of the timer, the sender issues
a Bitmap request message, represented as an empty All-0. The receiver attempts to send
back the bitmap, but in this example this too is lost. Following another timer expiry, the
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packet

FIGURE 7.11 – NoAck with FCN and packet lost.

sender again requests the bitmap. This time, the bitmap successfully reaches the sender. The
absence of a set bit on the right most position of the bitmap signals the loss of the All-1,
prompting the sender to resend it. Finally, the RCS is checked out and the receivers issue an
acknowledgment, setting the bit C to 1.

The timer Retransmission Timer in RFC 8724 is specified in the fragmentation rule
parameters and depends on the Layer 2 technology.

7.5.4 Terminating an exchange

If transmission goes well, the exchange will end with an All-1 fragment that carries a C
bit equal to 1. But this message can be lost, for the receiver, the transmission is over, but the
sender has no confirmation. The sender may continue to request the final bitmap using a
Bitmap Request message.

Two parameters may be defined in the rule to terminate an exchange :

https://www.rfc-editor.org/info/rfc8724
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FIGURE 7.12 – NoAck with FCN and All-1 lost

— Inactivity Timer defines the maximum time before ending the reception of a
message, to protect for instance when the sender is brutally removed from the network
during a fragmentation.

— MAX_ACK_REQUEST defines on the sender side the maximum bitmap request it can
send to recover a window.

Two other messages are specified to inform the other side of the abortion of a fragmen-
tation :

— The sender can send an empty All-1 message.

— The receiver can send an acknowledgment with C set to 1 and at least one byte of
bitmap with all bits set to 1.

7.5.5 Byte borrowing
7.5.6 Conclusion

Ack Always is a very reliable mode that allows fragmentation without any limitation in
the size of the initial message. The header overhead is small, but it leads to a significant num-
ber of exchanges between the sender and the receiver, especially when the acknowledgments
are lost.
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7.6 Ack on Error
As indicated by its name, Ack on Error diminishes the requirement for Acknowledgment

in reporting errors upon detecting losses within a Window, rather than indicating the accurate
receipt of an entire window. Ack on error utilizes the same fragment headers as Ack Always,
yet expands the Windows field size to encompass the entire fragmented message.

6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 7

Window 0 Window 1 Window 2 Window 3

FIGURE 7.13 – Window numbering with Ack On Error

Figure 7.16 on page 114 illustrates the numbering of windows in Ack on Error mode.
The FCN value is decremented to the final value of 0, signaling a new window. For our
scenario requiring four windows, the Window field in the fragmentation header must have a
minimum size of 2 bits.

Question 7.6.1: Sigfox fragmentation

Sigfox network uses an L2 frame with a maximum of 12 bytes. The FCN field size is
4 bits long. The Rule ID is 2 bits long and there is no DTAG. Verify that a window
field size of 3 bits is sufficient to transmit a compressed frame of 1280 bytes.

Question 7.6.2: FCN size

With the same hypothesis as in the previous question, what is the window field size if
the FCN field size is set to 2 ? and to 5?

Since each fragment is uniquely identified with the window and the FCN, this simplifies
the protocol. The exchange represented in Figure 7.14 on the following page shows that the
bitmap can be send only at the end of the fragmentation when the All-1 is sent.

In this example, the sender sends its three windows. Window 0 is fully received, but
windows 1 and 3 are incomplete. The receiver when receiving the All-1 check is that the
transmission is complete, all the windows except the last must be full, and the RCS is valid.
In our case, some fragments are missing in Window 1, the bitmap is sent, and the sender
sends again the missing fragment. Windows 2 is also incomplete, but this can be a normal
situation for an All-1 window, but since the RCS fails, the receiver sends the bitmap. The
sender detects the missing fragment and sends it. The RCS is validated and the positive
acknowledgment with C bit set to 1 is sent to the fragmenter to end the session.

Bitmap can be sent at any time, in the scenario we choose to wait the end of the
fragmentation. In the standard, it is also possible to send a bitmap after an All-0. But waiting
for the end of the fragmentation is a good strategy. In that case RFC 9441 allows the receiver
to send several bitmaps in a single message, to limit the number of feedback messages.

https://www.rfc-editor.org/info/rfc9441
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FIGURE 7.14 – Ack on Error with fragment lost

7.6.1 Variable MTU and Tiles

Ack-Always and Ack on Error are unable to dynamically adjust to changes in MTU. For
example, in LoRaWAN, moving the spreading factor from SF7 to SF12 decreases the MTU
from approximately 200 bytes to 50. Consequently, a fragment transmitted in SF7 cannot
be retransmitted if the spreading factor is changed to improve the link quality.

To be insensible to MTU variation, the fragmentation process must be independent of
the way the information is sent. Ack on Error introduces the concept of Tile Tile. A tile is a
fixed amount of information, chosen to fit the different possible MTU. RFC 9011 specifying
SCHC over LoRaWAN has fixed for this technology a Tile on 10 Bytes. The rest of the
process is slightly modified. Tiles are numbered in the same way we number fragments
with a FCN which should have been renamed in Tile Compressed Number. Then Tiles are
physically sent on Fragment, which carries as much as possible consecutive tiles. The fields

https://www.rfc-editor.org/info/rfc9011
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in the fragmentation header contain the window number and the FCN/TCN of the first Tile.

6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 7

Window 0 Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7

0
:6

1
:4

2
:2

3
:0

5
:5

6
:3

7
:

A
ll-

1

FIGURE 7.15 – Tiles numbering with Ack On Error

In Figure 7.16 on the next page, the initial message is divided into small tiles, leading to
more windows than just using the L2 fragment size. The notation x:y in the Fragment header
indicates the window number (x) and the FCN/TCN (y). The All-1 Fragment includes also
a RCS not represented in the figure.

However, the impact if Tiles on performance is very limited. The window field needs
to be 2 or 3 bits larger, as well as the impact on acknowledgment since only incomplete
windows are acknowledged. The only constraint is that only the last tile must be in a specific
All-1 frame, since All-1 does not give the real position in the original frame. The standard
also accepts that the All-1 frame does not contain a tile and must carry the RCS.

Regarding padding, a poor choice of tile length, combined with the length of the fragment
header, may result in the addition of bits at the end of the fragment to respect the alignment.
This paddig can be easily removed at reception, knowing the fragmentation header size and
the tile length. These padding are represented by the hatched pattern on the figure. Only the
padding on the All-1 fragment is processed as explained in Section 7.2.1 on page 103.

Fragment lost

Suppose that the Fragment starting with Tile 2 :2 is lost.
This will be represented in Figure 7.17 on the next page as a time diagram.
After receiving the fragments and the All-1 indicating the end of the fragmentation :

— the receiver has windows 2 and 3 completed.

— It sends the bitmap corresponding to window 2, the first incomplete window.

— The sender sends this window, but since the subsequent Tiles were sent in the same
fragment, there are also lost, they are also sent in the same fragment.
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FIGURE 7.16 – Tiles numbering with Ack On Error
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FIGURE 7.17 – Ack on Error with Tiles and fragment lost

— Once the fragment is received, the windows are full and the RCS is valid, so the
receiver acknowledges the fragmentation.

Now suppose that during the transmission the MTU has been reduced and only four
tiles can now be transmitted. Since the lost fragment contained 9 tiles, this leads to sending
three fragments to recover the lost one as shown in Figure 7.18 on the facing page.
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FIGURE 7.18 – Ack on Error with Tiles and fragment lost



8. Ping fragmentation

In this section, we continue exploring the compression of the Ping message. This time
we are going to generate larger messages in order to fragment them. The MOOC-5 directory
contains all the files we will need to modify.

8.1 Set up the environment
Launch the virtual machine and the network emulator. For each node (device, core, and

app), open a terminal and go to MOOC-5 directory. Your screen is expected to resemble the
one shown in Figure 8.1 on the next page.

On the device terminal, start the ping application ping_dev1.py. This program somew-
hat differs from the one created in chapter 5 on page 68.

Listing 8.1 – ping_dev1.py
import sys

2 # insert at 1, 0 is the script path (or ’’ in REPL)
sys.path.insert(1, ’../../ src/’)

4

from scapy.all import *
6

import gen_rulemanager as RM
8 from protocol import SCHCProtocol
from gen_parameters import T_POSITION_DEVICE

10

import netifaces as ni
12

import socket
14 import select

import time
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FIGURE 8.1 – Emulation screen for fragmentation.

16

addr = ni.ifaddresses(’eth0’)[ni.AF_INET ][0][ ’addr’]
18

PORT = 8888
20 deviceID = "udp:"+addr+":"+str(PORT)

22 print("device␣ID␣is", deviceID)

24 tunnel = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
tunnel.bind (("0.0.0.0", PORT)) # same port as in the DeviceID

26 # Create a Rule Manager and upload the rules.

28 rm = RM.RuleManager ()
rm.Add(file="icmp -bi.json")

30 rm.Print ()

32 core_id = None

34 # Start SCHC Machine
POSITION = T_POSITION_DEVICE

36

schc_machine = SCHCProtocol(role=POSITION , tunnel=tunnel)
38 schc_machine.set_rulemanager(rm)

scheduler = schc_machine.system.get_scheduler ()
40 tunnel = schc_machine.get_tunnel ()

Once the schc_machine and its environment have been established, scapy’s AsyncSnifferAsyncSniffer

is employed. In contrast to sniff, calling a function, a thread starts on line 43. It is made
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up of an infinite loop.

Listing 8.2 – ping_dev1.py

42 t = AsyncSniffer(iface="eth0", store=False)
t.start()

44 print ("sniff␣started")
while True:

46 scheduler.run(session=schc_machine)

48 s_in , _, _ = select.select ([ tunnel], [], [])
if len(s_in) > 0: # data on the socket

50 SCHC_pkt , device = tunnel.recvfrom (1000)

52 core_id = "udp:"+device [0]+":"+str(device [1])

54 origin , full_packet = schc_machine.schc_recv(
schc_packet=SCHC_pkt ,

56 device_id=deviceID ,
verbose=True)

58

if full_packet is not None and ICMPv6EchoRequest in full_packet:
60 response = IPv6Header = IPv6 (

version= full_packet[IPv6].version ,
62 tc = full_packet[IPv6].tc ,

fl = full_packet[IPv6].fl ,
64 hlim = 64,

src = full_packet[IPv6].dst ,
66 dst = full_packet[IPv6].src

) / ICMPv6EchoReply (
68 id = full_packet[ICMPv6EchoRequest ].id ,

seq = full_packet[ICMPv6EchoRequest ].seq ,
70 data = full_packet[ICMPv6EchoRequest ].data

)
72 schc_machine.schc_send(bytes(response),

core_id = core_id ,
74 verbose=True)

time.sleep (0.1)

The loop will check if some data arrive at the tunnel interface (line 48). If so, the core_id
is computed from the received message. The fragments are sent to the schc_machine. If
the fragmentation process is not finished the schc_recv returns a None value.

If all fragments have been received, the function returns the full packet uncompressed in
scapy format.

Line 59 checks if this message is an Echo Request. In that case, it creates an Echo
Reply message. This message is returned to the schc_machine. bytes transforms the scapy
message into a byte array and core_id tells the schc_machine to send it at the core.

Now type :
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[root@device MOOC -2]$ python3 ping_dev1.py
device ID is udp :10.0.0.20:8888
****************************************
Device: udp :10.0.0.20:8888
/-------------------------\
|Rule 6/3 110 |
|---------------+---+--+--+------------------------------+-------------+----------------\
|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |
|IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
|IPV6.NXT | 8| 1|BI| 3a|EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI| ff|IGNORE |NOT -SENT |
|IPV6.DEV_PREFIX| 64| 1|BI| aaaa000000000000|EQUAL |NOT -SENT |
|IPV6.DEV_IID | 64| 1|BI| 0000000000000001| EQUAL |NOT -SENT |
|IPV6.APP_PREFIX| 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|IPV6.APP_IID | 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|ICMPV6.TYPE | 8| 1|DW| 80| EQUAL |NOT -SENT |
|ICMPV6.TYPE | 8| 1|UP| 81| EQUAL |NOT -SENT |
|ICMPV6.CODE | 8| 1|BI| 00| EQUAL |NOT -SENT |
|ICMPV6.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
|ICMPV6.IDENT | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.SEQNO | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.PAYLOAD |var| 1|BI| 00| IGNORE |VALUE -SENT |
\---------------+---+--+--+------------------------------+-------------+----------------/
sniff started

Similarly, on the core, run ping_core.py :
[root@core MOOC -2]$ python3 ping_core1.py
****************************************
Device: udp :10.0.0.20:8888
/-------------------------\
|Rule 6/3 110 |
|---------------+---+--+--+------------------------------+-------------+----------------\
|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
|IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |
|IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |
|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
|IPV6.NXT | 8| 1|BI| 3a|EQUAL |NOT -SENT |
|IPV6.HOP_LMT | 8| 1|BI| ff|IGNORE |NOT -SENT |
|IPV6.DEV_PREFIX| 64| 1|BI| aaaa000000000000|EQUAL |NOT -SENT |
|IPV6.DEV_IID | 64| 1|BI| 0000000000000001| EQUAL |NOT -SENT |
|IPV6.APP_PREFIX| 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|IPV6.APP_IID | 64| 1|BI|------------------------------|IGNORE |VALUE -SENT |
|ICMPV6.TYPE | 8| 1|BI| 80| EQUAL |NOT -SENT |
|ICMPV6.CODE | 8| 1|BI| 00| EQUAL |NOT -SENT |
|ICMPV6.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
|ICMPV6.IDENT | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.SEQNO | 16| 1|BI| 00| IGNORE |VALUE -SENT |
|ICMPV6.PAYLOAD |var| 1|BI| 00| IGNORE |VALUE -SENT |
\---------------+---+--+--+------------------------------+-------------+----------------/

And finally, on the app, you can send a regular ping to the device.
[root@App MOOC -2]$ ping6 aaaa ::1
PING aaaa ::1( aaaa ::1) 56 data bytes
64 bytes from aaaa ::1: icmp_seq =1 ttl =255 time =1218 ms
64 bytes from aaaa ::1: icmp_seq =2 ttl =255 time =265 ms
64 bytes from aaaa ::1: icmp_seq =3 ttl =255 time =1142 ms
64 bytes from aaaa ::1: icmp_seq =4 ttl =255 time =213 ms
^C
--- aaaa ::1 ping statistics ---
5 packets transmitted , 4 received , 20% packet loss , time 4059ms
rtt min/avg/max/mdev = 212.950/709.578/1217.792/471.549 ms, pipe 2
[root@App MOOC -2]$

The device responds and the ping program displays the response. Delays can be quite
high because the core SCHC machine is blocked because there is little traffic on the network.
We can accelerate the answers by generating traffic in the core. Open a new window on the
core and type :
[root@core examples]$ ping -i 0.1 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq =1 ttl=64 time =1.59 ms
64 bytes from 127.0.0.1: icmp_seq =2 ttl=64 time =0.335 ms
64 bytes from 127.0.0.1: icmp_seq =3 ttl=64 time =0.425 ms
64 bytes from 127.0.0.1: icmp_seq =4 ttl=64 time =0.412 ms
...
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The -i 0.1 force the ping to send a message every 0.1 seconds. Forget about this
window.

Now, if we ping the device, the response time is shorter and more regular.
[root@App MOOC -2]$ ping6 aaaa ::1
PING aaaa ::1( aaaa ::1) 56 data bytes
64 bytes from aaaa ::1: icmp_seq =1 ttl =255 time =136 ms
64 bytes from aaaa ::1: icmp_seq =2 ttl =255 time =237 ms
64 bytes from aaaa ::1: icmp_seq =3 ttl =255 time =97.5 ms
64 bytes from aaaa ::1: icmp_seq =4 ttl =255 time =93.0 ms
^C
--- aaaa ::1 ping statistics ---
4 packets transmitted , 4 received , 0% packet loss , time 3008ms
rtt min/avg/max/mdev = 93.030/140.875/237.096/58.002 ms

8.2 Large pings
We can increase the size of a ping message with the -s option 1. The option -c 1 forces

the ping application to send a single message.
[root@App MOOC -2]$ ping6 -s 1000 -c 1 aaaa ::1
PING aaaa ::1( aaaa ::1) 1000 data bytes

--- aaaa ::1 ping statistics ---
1 packets transmitted , 0 received , 100% packet loss , time 0ms
[root@App MOOC -2]$

The core displays this message :
make_frag_session , device_id: udp :10.0.0.20:8888 core_id None direction DW
Protocol fragmentation rule not found

The compression result is too large for a single UDP message ; openSCHC limits the
size of UDP tunneled messages. You can check that the maximum size for sending without
fragmentation is 242 bytes.

8.2.1 NoAck rule
The icmp-bi.json file contains a single compression rule, which we used previously

to compress ICMPv6 traffic. We need to define a fragmentation rule. Edit the json file to
add the following rule :

{
"RuleID" : 10,
"RuleIDLength" : 5,
"Fragmentation" : {

"FRMode ": "NoAck",
"FRDirection ": "DW"

}
}

Rule 10/5 contains minimal information for a NoAck fragmentation mode.

Question 8.2.1: FCN Size

When examining the Rule Manager rules display, how large is the FCN field for rule
4/3?

1. Do not increase too much the value. A length of 2 000 bytes will trigger the IPv6 fragmentation
extension, which will not be recognized by the openSCHC parser
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When receiving the message, the core fragments it into 50 byte long fragment up to the
last one which is 6 byte long.

<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 50--| r:10/5 (noA) DTAG=0 W=- FCN=All -0
<-- 6--| r:10/5 (noA) DTAG=0 W=- FCN=All -1

At the other side of the UDP tunnel, the Device receives the fragments and reconstruct
the original message.

r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -0|<-- 50--
r:10/5 (noA) DTAG=0 W=- FCN=All -1|<-- 6--
SUCCESS: MIC matched. packet bytearray(b’#\ xf6\xc9l ’) == result b’#\xf6\xc9l ’
+-###[ Ethernet ]###

dst = 00:00:00:00:00:00
src = 00:00:00:00:00:00
type = IPv6

###[ IPv6 ]###
version = 6
tc = 0
fl = 0
plen = 1008
nh = ICMPv6
hlim = 255
src = 2001:0:0:1::15 [Teredo srv: 0.0.0.1 cli: 255.255.255.234:65535]
dst = aaaa ::1

###[ ICMPv6 Echo Request ]###
type = Echo Request
code = 0
cksum = 0x8b84
id = 0x6877
seq = 0x1
data = b’\xd0\x15\tg\x00\x00\x00\x00\x80U\n\x00\x00\x00\x00\x00\x10\x11...
...

Question 8.2.2: Return path

Why the Application do not receive a response to its ping message?
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Question 8.2.3: Reverse Path

Edit the rules on the Device and in the Core to fix the problem.



9. Conclusion

This first edition of the Book of SCHC provides a foundation for understanding and
implementing Static Context Header Compression in IoT networks. Through practical
examples and hands-on exercises, it demonstrates how SCHC enables efficient communi-
cations on constrained networks while maintaining IP compatibility. The combination of
theoretical explanation and OpenSCHC implementation offers readers both the knowledge
and tools needed to start working with SCHC.

However, SCHC technology and its implementations continue to evolve rapidly. Future
editions of this book will significantly expand several important areas of knowledge and
practical implementation.

The fragmentation section will be considerably enhanced to cover more advanced topics.
Readers will discover detailed explanations of fragmentation reliability mechanisms and
learn sophisticated tile management strategies. The management of multiple Maximum
Transmission Units (MTUs) will be thoroughly explained, along with specific optimization
techniques for different radio technologies. A complete section will be dedicated to the
implementation of Request-Response patterns in fragmentation scenarios.

Rule management will see major developments through the integration of CORECONF.
This management interface will revolutionize how rules are handled in SCHC implementa-
tions. Future editions will explain how to perform dynamic rule updates and distribution,
implement proper rule versioning, and manage rule lifecycles. Security considerations in
rule distribution will be thoroughly addressed, along with techniques for managing rules
across multiple tenants.

A significant addition will come from IMT Atlantique’s laboratory, which will provide
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real-world embedded implementations. These practical examples will demonstrate SCHC
implementation on micro-controllers and show integration with LoRaWAN networks. The
reader will learn specific techniques for optimizing battery-operated devices, monitoring
real-time performance, and managing memory footprint constraints. These real-world
examples will bridge the gap between theory and practical implementation.

The SCHC community continues to grow, and future editions will incorporate field
experience from actual deployments. The best practices gathered from the community
will provide valuable insights into real-world challenges and solutions. New use cases
and applications will demonstrate the versatility of SCHC, while detailed performance
optimization techniques will help readers maximize the efficiency of their implementations.

As SCHC-related standards evolve at the IETF, future editions will cover new RFCs
and their implementations. The integration of SCHC with emerging IoT standards will be
explored, and new compression and fragmentation techniques will be explained as they are
developed. Protocol extensions will be thoroughly documented to ensure that readers stay
up-to-date with the latest developments.

This book represents a starting point in the journey of SCHC implementation. We
encourage readers to follow the SCHC working group at IETF and participate in OpenSCHC
development. Sharing implementation experiences and contributing to the growing body of
SCHC knowledge will help advance this technology. The foundations provided in this book
enable readers to begin implementing SCHC while preparing for future developments in
this dynamic field.

Looking ahead, SCHC shows great promise in enabling efficient IoT communications
across a wide range of applications and constraints. From smart cities to industrial IoT, from
agricultural monitoring to space communications, SCHC will continue to evolve and adapt
to new challenges. Future editions of this book will track these developments and provide
readers with the knowledge and tools needed to implement increasingly sophisticated SCHC
solutions.



10. Answers to the questions

Question 2.3.1 page 16 Launch wireshark trace_coap.pcap. Look at packet 6 in
the bottom window. Knowing that the first 14 bytes are the Ethernet header, measure
the size of the IPv6 packet.

The network analyzer displays a length of 85 bytes, why does the payload length in
the header field contain the value 31?

The IPv6 packet is made up of 4 full lines of 16 bytes and 7 additional bytes (2 in the first
line and 5 in the last line), which correspond to 4×16+7 = 71 bytes. Payload length fields
not include the header length of 40 bytes for IPv6 and the 14 Bytes of Ethernet header.

Question 2.4.1 page 17 To access to a specific field in a packet, scapy uses the
following notation p[L].f, where p is the Scapy frame, L is the layer and f is the field
in that layer. For example, packet[UDP].sport gives access to the UDP source port.

Modify the previous program pcap_read.py to display all the Flow Labels used by
IPv6.

The following program add all new flow labels in a list.

Listing 10.1 – pcap_flowlabel.py
1 #!/usr/bin/env python3
from scapy.all import *

3

# rdpcap comes from scapy and loads in our pcap file
5 packets = rdpcap(’trace_coap.pcap’)
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7 flowlabel = []

9 for packet in packets:
packet.show()

11 if packet[IPv6].fl not in flowlabel:
flowlabel.append(packet[IPv6].fl)

13 hexdump(packet)

15 print ("="*40)

17 print ("Flow␣Label␣found:", flowlabel)

We have only two labels [479647, 673272] that correspond to both directions of the commu-
nication.

Question 2.7.1 page 24 Scapy may not understand CoAP headers and will consider
the UDP payload as raw data. Based on pcap_read.py write a program that displays
the CoAP header and the Token, if exists.

The following program displays the CoAP fields ; bytes(packet [Raw]) (line 17) trans-
forms the Scapy information into a byte array.

Listing 10.2 – pcap_read_coap.py
1 #!/usr/bin/env python3
from scapy.all import *

3 import binascii

5 from torch import binary_cross_entropy_with_logits

7 # rdpcap comes from scapy and loads in our pcap file
packets = rdpcap(’trace_coap.pcap’)

9

type_name = ["CON", "NON", "ACK", "RST" ]
11

for packet in packets:
13 #packet.show()

#hexdump(packet)
15 #print ("="*40)

17 coap = bytes(packet[Raw])
print ("CoAP␣Header", binascii.hexlify(coap [:4]), end="")

19 version = coap[0]>> 6
type_field = (coap [0] & 0b0011_0000) >> 4

21 tkl = coap [0] & 0b0000_1111

23 print (":␣version", version ,
"type", type_field , type_name[type_field],
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25 "token␣length", tkl , end="")

27 print ("␣Code␣{:3}␣({:1}.{:02})".format(
coap[1],

29 coap[1]>>5,
coap [1] & 0b000_11111), end="")

31

print ("␣MID:", (coap [2]<<8)| coap[3], end="")
33

if tkl > 0:
35 print("␣Token:", binascii.hexlify(coap [4:4+ tkl]))

else:
37 print ("No␣token")

Question 2.7.2 page 24 Using the previous program, or Wireshark, what is the CoAP
Port Number used by the server ?

Looking at the nature of the request allows one to determine which host is the server. For
example, the first packet in the trace is a GET request, originating from a client to a server ;
the destination port gives the port value 5683 for the CoAP server. This is the default value.

Question 2.7.3 page 25 How do the Message ID evolve between two requests ? Is that
mandatory?

It is incremented. No, the Message ID has to be unique ; it could be chosen randomly, but
incrementation is a simple way to guarantee that it will not be reused for another transaction.

Question 2.7.4 page 28 Generate a CoAP Message requesting the content of resource
/sensor/max_temperature with the CBOR serialization. No token are used.

This should be a GET Message 0.01. The URI path contains two elements, and the second
is 14 characters long. The length is coded the following way. The 4 bits contains value 0xd
followed by a byte containing the real value minus 13.

The Accept option must be set to 60 (0x3c). Since Accept option value is 17, it follows
Uri-Path option with a delta of 6.
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01 00 0000 000 00001
class detail Message ID

b 6 ’s’ ’e’ ’n’ ’s’ ’o’ ’r’ 0 d

01 ’m’ ’a’ ’x’ ’_’ ’t’ ’e’ ’m’

’p’ ’e’ ’r’ ’a’ ’t’ ’u’ ’r’ ’e’

6 1 3c

Question 2.7.5 page 28 What will be the answer if the maximum temperature is
20°Celsius is immediately returned.

The response uses an ACK message and the code will be 2.05. The options indicated the
Content-Format of 60 indicating a CBOR serialization, followed by the payload marker
(0xFF) and the value 20 coded in CBOR as 0x14 1

01 10 0000 010 00101
class detail Message ID

c 1 3c ff 14

Question 2.7.6 page 29 What will be the bitmap value if a client is just interested in
4.xx and 5.xx notifications.

Only the 2.xx should be blocked, so the bitmap is 0000 0010 or 0x02.

Question 2.8.1 page 32 What is the URI in the previous command?

coap://[::1]

1. See cbor.me for convertion.

cbor.me


129

Question 2.8.2 page 32 Why the request contains no option?

The URI is implicit, the scheme coap is by default, the authority is the server itself, so it
does not need to be added, and the URI path is empty.

Question 2.8.3 page 33 What are the options in the response?

Etag (4) 2 and Content-Format (4+8=12). The value (0x28) correpond to a link-format,
where URI Path (inside <>) sometime with associated properties are listed. Here we have
the list of all the URI path corresponding to files and direction in /bin.

Question 2.8.4 page 33 Forge a request, for example coap://[::1]/foo/bar?q=1r=0,
and ask for a content in CBOR (value 60). What are the CoAP options?

— Uri-Path (11) : foo

— Uri-Path (0+11) : bar

— Uri-Query (4+11=15) : q=1

— Uri-Query (0+15) : r=0

— Accept (2+15) : 60 (CBOR)

Question 2.8.5 page 33 What is the goal of the –non option in the aiocoap-client
program?

In that case, NON messages will be used instead of the CON/ACK exchange, the token links
requests and responses.

Question 3.4.1 page 42 It is possible to have the same RuleID for a compression rule
and a fragmentation rule.

— True

2. Etag is a hash of the content used to see if the value in client’s cache correspond to the resource content
on the server. Later, the client can insert this value into the If-Not-Match option, the server will return
content only if the content has evolved.
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— False

A ruleID can only designated a single nature of rule.

Question 3.4.2 page 42 Give the binary representation of Rule ID 12/5

In binary on 5 bits, 12/5 can be writen 01100

Question 3.4.3 page 42 Which rules are compatible with 12/5?

— 3/3

— 13/5

— 24/6

— 26/6

— 12/6

The RuleID 3/3 is 011 and starts with the same binary sequence as 12/5. The RuleID 13/5
is 01101 and is correct, since the binary sequence does not match. The RuleID 24/6 is
011000 and the first 5 bits are similar. The RuleID 24/6 is 001100 and is correct, since the
binary sequence does not match.

Question 4.1.1 page 46 Considering the packet above, in hexadecimal and disassem-
bled.

What is the value of the IPV6.VER field?

— 4

— 40

— 6

— 60

The direction is down-link, what is the value of the IPV6.DEV_PREFIX field?

— 20 01 41 D0 03 02 22 00

— 00 00 00 00 00 00 13 B3
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— 20 01 41 D0 04 04 02 00

— 00 00 00 00 00 00 3A 86

Question 4.1.2 page 47 What are the bits tested for a MSB of 12 bits and a Target
Value of 23628.

— 111000100110

— 101110001001

— 100110100100

— 010001011100

23628 is 0x5C4C in hexadecimal, the 12 first bits are 0x5C4 or 010111000100 in binary.

Question 4.1.3 page 47 The traffic issued from the device and the application may
both use IPv6 global and link-local addresses. What will be the Target Value to describe
these device prefixes?

The Target Value will be an array of 2 elements ["2001:41D0:0302: 2200::/64",
"FE80::/64"].

Question 4.2.1 page 51 Considering the rule given listing 4.2 on page 50. What is the
length of the residue ? What is the size of the SCHC packet (assuming that the data part
is 40 byte long)?

In this rule, most fields have the CDA not sent. The fields :

— IPV6.HOP_LMT is sent on 8 bits,

— both prefixes are compressed with a Mapping List of 2 entries, so the residue will be
1 bit per prefix,

— the UDP.DEV_PORT is fully sent on 16 bits and

— the 4 LSB of UDP.APP_PORT.

the residue will be 8+2∗1+16+4 = 30 bits long.
To compose a SCHC packet, the Rule ID is added before the residue (3 bits), then the 40

bytes of data and a padding of 7 bits to align the SCHC packet on a byte boundary. Leading
to a SCHC packet of 44 bytes.



132 Chapitre 10. Answers to the questions

Question 4.2.2 page 51 Does the following rule match the packet given page 45
matches the rule given in listing 4.2 on page 50.

No, in the packet, the Flow Label contains 673272 and the rule expects 144470. The rule
will be rejected.

Question 4.2.3 page 51 Decompress the following up-link SCHC packet a4 6e b1
7a a4 34 90 86 85 00 a.

a. To help you, this is the binary equivalent : 101 00100011 0 1 1101011000101111 0101
01001000 01101001 00100001 00001101 00001010 0000000

The rule ID is 101 (5/3) followed by Residue :

— version is stored in the rule : 6

— Traffic Class is store in the rule : 1

— Flow Label is stored in the rule : 144470

— Length will be computed when the full packet will be reconstructed.

— Next Header is found in the rule : 17

— Hop Limit is taken from the residue : 00100011 or 35

— Device prefix is taken from the residue (0) pointing to the first entry in the mapping
list : FE80::/64

— Device IID is stored in the rule ::13b3, since it is a up-link packet. This will form
the source address in the IPv6 packet FE80::13b3/64.

— The application prefix is taken from residue (1) that points to the second entry in the
mapping list : FE80::/64.

— The Application Interface IDentifier (IID) is stored in the rule 2, since it is a up-link
packet. This will form the destination address in the IPv6 packet FE80::2/64.

— The Device port is sent in the residue 1101011000101111 or 21447. This will be the
source port.

— The Application port is a combination of the 12 first bits of the Target Value 5680 or
0001 0110 0011 combined with the residue of 0101 forming the application port of
5685.

— The UDP length and checksum will be computed when the full packet is reconstructed.
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Question 4.3.1 page 56 Adapt the rule stored in ipv6.json file (see Listing 4.2 on
page 50) to allow for at least one downlink packet matching.

Question 4.3.2 page 57 How to make that rule bidirectional ? You can add a Direction
Indicator (key "DI" in openSCHC format, and a value "UP" or "DW") to force the
matching in a specific direction.

The IPv6 addresses or port numbers are not sensitive to direction, in the example, the Flow
Label is different in both directions. So, we need to specify a different TV for each direction.
The Listing 10.3 gives the first lines of the rule with the double definition of IPV6.FLIPV6.FL .

Listing 10.3 – ipv6-sol-bi.json
[{

2 "RuleIDValue" : 5,
"RuleIDLength": 3,

4 "Compression": [
{"FID": "IPV6.VER",

6 "TV": 6, "MO": "equal",
"CDA": "not -sent"},

8 {"FID": "IPV6.TC",
"TV": 0, "MO": "equal",

10 "CDA": "not -sent"},
{"FID": "IPV6.FL", "DI": "DW",

12 "TV": 673272 , "MO": "equal",
"CDA": "not -sent"},

14 {"FID": "IPV6.FL", "DI": "UP",
"TV": 479647 , "MO": "equal",

16 "CDA": "not -sent"},
{"FID": "IPV6.LEN",

This leads to the following full rule.

Listing 10.4 – ipv6-bi
1 ****************************************

Device: None
3 /-------------------------\

|Rule 5/3 101 |
5 |---------------+---+--+--+------------------------------+-------------+----------------\

|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
7 |IPV6.TC | 8| 1|BI| 00| EQUAL |NOT -SENT |

|IPV6.FL | 20| 1|DW| 0a45f8|EQUAL |NOT -SENT |
9 |IPV6.FL | 20| 1|UP| 07519f|EQUAL |NOT -SENT |

|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
11 |IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |

|IPV6.HOP_LMT | 8| 1|BI|------------------------------|IGNORE |VALUE -SENT |
13 |IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |

: . : . :. :. : 200141 d003022200: . : . :
15 : . : . :. :. : 200141 d004040200: . : . :

|IPV6.DEV_IID | 64| 1|BI| 0000000000003 a86|EQUAL |NOT -SENT |
17 |IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |

: . : . :. :. : 200141 d003022200: . : . :
19 : . : . :. :. : fe80000000000000: . : . :

|IPV6.APP_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |
21 |UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |

|UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |
23 |UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |

|UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
25 \---------------+---+--+--+------------------------------+-------------+----------------/



134 Chapitre 10. Answers to the questions

Question 4.4.1 page 59 Identify in the trace 10.5, the different elements that make up
a SCHC packet (rule ID, residues, data, and padding). You can add the verbose=True
argument when calling the compresson method.

The verbose option allows us to see how the bitbuffer is filled. The dashed line underneath
represents the bits really set.

Listing 10.5 – trace-bitbuffer
1 10100000/3
---

3 10100000/3
---

5 10100000/3
---

7 10100000/3
---

9 10100000/3
---

11 10100000/3
---

13 1010100000000000/11
-----------

15 1010100000010000/13
-------------

17 1010100000010000/13
-------------

19 1010100000010010/15
---------------

21 1010100000010010/15
---------------

23 10101000000100110000001101110010/31
-------------------------------

25 1010100000010011000000110111001001100000/35
-----------------------------------

27 1010100000010011000000110111001001100000/35
-----------------------------------

29 1010100000010011000000110111001001100000/35
-----------------------------------

31 SCHC packet in hex
a81303726c48b3df07d8bfe646064665a60685a606c4062607462600 /219

33 SCHC packet in binary
101010000001001100000011011100100110110001001000101100111101

35 111100000111110110001011111111100110010001100000011001000110
011001011010011000000110100001011010011000000110110001000000

37 01100010011000000111010001100010011000000000/219

.

— Line 1, the bitbuffer contains the 3 bits of Rule ID 5/3. Up to line 12, the bitbuffer is
not modified ; this corresponds to the first 6 fields of the rule (IPV6.VER, IPV6.TC,
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IPV6.FL, IPV6.LEN, IPV6.NXT) with a not-sent or compute-* CDA.

— line 13, the bitbuffer is increased by 8 bits 01000000 corresponding to the IPV6.HOP_LMT
field with a value-sent CDA.

— Line 15 and 17, the two added bits correspond to the index of the Device prefix and
the Application prefix.

— Line 23, the 16 bits of the Device UDP port are added, ine 25, the 4 LSB bits are
added.

These 35 bits compose the RuleID and the residue part. Line 35, the full SCHC packet
includes the payload part and the padding (non-dashed bits).

Question 4.4.2 page 62 In this example, what is the compression ratio of the IPv6/UDP
header?

Original IPv6/UDP header is 40+8 byte long or 384 bits. SCHC compresses it into 35 bits.
The header is roughly divided by 10.

Question 4.5.1 page 63 Modify the previous rule to handle the Flow Label and Hop
Limit fields as described in this section. Is the checksum modified?

The rule is as follows :

Listing 10.6 – ipv6-sol-bi-fl
1 Device: None

/-------------------------\
3 |Rule 5/3 101 |

|---------------+---+--+--+------------------------------+-------------+----------------\
5 |IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |

|IPV6.TC | 8| 1|BI| 00| IGNORE |NOT -SENT |
7 |IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |

|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
9 |IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |

|IPV6.HOP_LMT | 8| 1|UP| 01| IGNORE |NOT -SENT |
11 |IPV6.HOP_LMT | 8| 1|DW| 32| IGNORE |NOT -SENT |

|IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |
13 : . : . :. :. : 200141 d003022200: . : . :

: . : . :. :. : 200141 d004040200: . : . :
15 |IPV6.DEV_IID | 64| 1|BI| 0000000000003 a86|EQUAL |NOT -SENT |

|IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |
17 : . : . :. :. : 200141 d003022200: . : . :

: . : . :. :. : fe80000000000000: . : . :
19 |IPV6.APP_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |

|UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |
21 |UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |

|UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |
23 |UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|

\---------------+---+--+--+------------------------------+-------------+----------------/

Notice that the conversion for the flow label field is bidirectional and different for the
hop-limit field regarding the direction.

The comparison between the original packet and the decompressed one is the following :
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600a45f8001f1140200141d00302220000000000000013b3200141d0040402000000000000003a86163381b9001f5966...

60000000001f1132200141d00302220000000000000013b3200141d0040402000000000000003a86163381b9001f5966...

The checksum is not modified since neither the flow label nor the hop limit is included
in its computation.

Question 4.8.1 page 65 How many type of CoAP transactions can you identify?

Two type transactions :

— a GET to coap ://user.ackl.io/time include in a CONfirmable CoAP message. The
positive notification 2.05 is included in the CoAP ACK message that contains the
requested resource.

— a PUT to coap ://user.ackl.io/other/block in a CONfirmable CoAP message containing
information. The positive notification 2.04 in a CoAP ACK message contains no
data.

Question 4.8.2 page 65 What is the size and value of the token?

The token is 2 byte long.

Question 4.8.3 page 66 What are the code values, are they related to a direction?

Possible values are GET and PUT for uplink messages and 2.05 2.05and 2.04 for downlink.

Question 4.8.4 page 66 What are the options for the different types of messages.

— The GET request contains an Uri-host Uri-hostand an a single Uri-path options.

— The PUT request contains Uri-host and two Uri-path Uri-pathoptions.

— The answers 2.05 or 2.04 2.04have no options.
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Question 4.8.5 page 66 Define the set of rules (with RuleID 5/3 and 6/3), to compress
both IPv6/UDP/CoAP sessions.

Listing 10.7 – rule_coap1
1 ****************************************

Device: None
3 /-------------------------\

|Rule 5/3 101 |
5 |---------------+---+--+--+------------------------------+-------------+----------------\

|IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |
7 |IPV6.TC | 8| 1|BI| 00| IGNORE |NOT -SENT |

|IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |
9 |IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |

|IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |
11 |IPV6.HOP_LMT | 8| 1|UP| 01| IGNORE |NOT -SENT |

|IPV6.HOP_LMT | 8| 1|DW| 32| IGNORE |NOT -SENT |
13 |IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |

: . : . :. :. : 200141 d003022200: . : . :
15 : . : . :. :. : 200141 d004040200: . : . :

|IPV6.DEV_IID | 64| 1|BI| 0000000000003 a86|EQUAL |NOT -SENT |
17 |IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |

: . : . :. :. : 200141 d003022200: . : . :
19 : . : . :. :. : fe80000000000000: . : . :

|IPV6.APP_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |
21 |UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |

|UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |
23 |UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |

|UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|
25 |COAP.VER | 2| 1|BI| 01| EQUAL |NOT -SENT |

|COAP.TYPE | 2| 1|UP| 00| EQUAL |NOT -SENT |
27 |COAP.TYPE | 2| 1|DW| 02| EQUAL |NOT -SENT |

|COAP.TKL | 4| 1|BI| 02| EQUAL |NOT -SENT |
29 |COAP.CODE | 8| 1|UP| 01| EQUAL |NOT -SENT |

|COAP.CODE | 8| 1|DW| 45| EQUAL |NOT -SENT |
31 |COAP.MID | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |

|COAP.TOKEN |tkl| 1|BI|------------------------------|IGNORE |VALUE -SENT |
33 |COAP.URI -HOST |var| 1|UP| 757365722 e61636b6c2e696f|EQUAL |NOT -SENT |

|COAP.URI -PATH |var| 1|UP| 74696 d65|EQUAL |NOT -SENT |
35 \---------------+---+--+--+------------------------------+-------------+----------------/

/-------------------------\
37 |Rule 6/3 110 |

|---------------+---+--+--+------------------------------+-------------+----------------\
39 |IPV6.VER | 4| 1|BI| 06| EQUAL |NOT -SENT |

|IPV6.TC | 8| 1|BI| 00| IGNORE |NOT -SENT |
41 |IPV6.FL | 20| 1|BI| 00| IGNORE |NOT -SENT |

|IPV6.LEN | 16| 1|BI|------------------------------|IGNORE |COMPUTE -LENGTH |
43 |IPV6.NXT | 8| 1|BI| 11| EQUAL |NOT -SENT |

|IPV6.HOP_LMT | 8| 1|UP| 01| IGNORE |NOT -SENT |
45 |IPV6.HOP_LMT | 8| 1|DW| 32| IGNORE |NOT -SENT |

|IPV6.DEV_PREFIX| 64| 1|BI| fe80000000000000|MATCH -MAPPING|MAPPING -SENT |
47 : . : . :. :. : 200141 d003022200: . : . :

: . : . :. :. : 200141 d004040200: . : . :
49 |IPV6.DEV_IID | 64| 1|BI| 0000000000003 a86|EQUAL |NOT -SENT |

|IPV6.APP_PREFIX| 64| 1|BI| 200141 d004040200|MATCH -MAPPING|MAPPING -SENT |
51 : . : . :. :. : 200141 d003022200: . : . :

: . : . :. :. : fe80000000000000: . : . :
53 |IPV6.APP_IID | 64| 1|BI| 00000000000013 b3|EQUAL |NOT -SENT |

|UDP.DEV_PORT | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |
55 |UDP.APP_PORT | 16| 1|BI| 1630| MSB (12) |LSB |

|UDP.LEN | 16| 1|BI| 00| IGNORE |COMPUTE -LENGTH |
57 |UDP.CKSUM | 16| 1|BI| 00| IGNORE |COMPUTE -CHECKSUM|

|COAP.VER | 2| 1|BI| 01| EQUAL |NOT -SENT |
59 |COAP.TYPE | 2| 1|UP| 00| EQUAL |NOT -SENT |

|COAP.TYPE | 2| 1|DW| 02| EQUAL |NOT -SENT |
61 |COAP.TKL | 4| 1|BI| 02| EQUAL |NOT -SENT |

|COAP.CODE | 8| 1|UP| 03| EQUAL |NOT -SENT |
63 |COAP.CODE | 8| 1|DW| 44| EQUAL |NOT -SENT |

|COAP.MID | 16| 1|BI|------------------------------|IGNORE |VALUE -SENT |
65 |COAP.TOKEN |tkl| 1|BI|------------------------------|IGNORE |VALUE -SENT |

|COAP.URI -HOST |var| 1|UP| 757365722 e61636b6c2e696f|EQUAL |NOT -SENT |
67 |COAP.URI -PATH |var| 1|UP| 6f74686572|EQUAL |NOT -SENT |

|COAP.URI -PATH |var| 2|UP| 626 c6f636b|EQUAL |NOT -SENT |
69 \---------------+---+--+--+------------------------------+-------------+----------------/

Question 4.8.6 page 66 In compress rule, identify the different elements that make up
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the compression residue.

The SCHC header for GET requests, given the listing 10.8, has been edited to show the
composition of the residue.

Listing 10.8 – residue1
1 Original packet size (in byte) 72

Compressed packet (in byte) 8
3 101 10 01 1000000110111001 0011 1001111011101010 0011111010110111 00000/59

=== == == ================ ==== ================ ================

where :

— 101 is the Rule ID,

— 10 is the index for the Device prefix,

— 01 is the index for the Application prefix,

— 1000000110111001 contains the device UDP port

— 0011 are the LSB of the Application UDP port

— 1001111011101010 is the Message ID field

— 0011111010110111 is the token

There are no data following the headers. As we saw, the remaining bits, set to 0, are the
padding bits.

The response to the GET is given Listing 10.9.

Listing 10.9 – residue2
101 10 01 1000000110111001 0011 1001111011101010 0011111010110111 00110...1100000011100000000/187

2 === == == ================ ==== ================ ================ -----...--------------

The residue format is the same, followed by the payload.

Question 4.8.7 page 66 Do these rules (see correction on the preceding page) introduce
padding bits ?

The compression introduces a 5 bit padding. The not byte-aligned compression CDA is the
mapping index for device and application addresses introducing 4 bits and the MSB/LSB
introducing 4 bits. But since the result is 8 bits, no padding is needed. In fact, the padding
comes from the rule ID length of 3 bits, leading to 5 bits padding.

Question 4.8.8 page 66 Propose some solutions to reduce the impact of the padding.
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One easy solution is to increase the rule ID length. The padding bits are always lost bits.
Increasing the length of the rule allows the creation of more rules.

Question 5.3.1 page 72 What is the nature of these two ICMPv6 messages?

The first message of type 0x88 (136) is The second message of type 0x80 corresponds to
the Ping Echo Request.

Question 5.3.2 page 73 Define a compression rule allowing any host on the Internet to
ping the device.

I

Question 5.3.3 page 75 Modify the previous rule to allow only the App to ping the
device, and limit the Sequence Number to 4 bits.

In this rule, the App IPv6 prefix and IID are checked with the equal/not-sent MO/CDA and
the ICMPv6.SEQNO uses MSB(12)/LSB to send a residue of 4 bits.

Listing 10.10 – icmp-single.json
{

2 "DeviceID" : "udp :10.0.0.20:8888",
"SoR" : [

4 {
"RuleID": 6,

6 "RuleIDLength": 3,
"Compression": [

8 {"FID": "IPV6.VER", "TV": 6, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.TC", "TV": 0, "MO": "equal", "CDA": "not -sent"},

10 {"FID": "IPV6.FL", "TV": 0, "MO": "ignore","CDA": "not -sent"},
{"FID": "IPV6.LEN", "MO": "ignore","CDA": "compute -length"},

12 {"FID": "IPV6.NXT", "TV": 58, "MO": "equal", "CDA": "not -sent"},
{"FID": "IPV6.HOP_LMT", "TV" : 255,"MO": "ignore","CDA": "not -sent"},

14 {"FID": "IPV6.DEV_PREFIX","TV": "AAAA ::/64",
"MO": "equal","CDA": "not -sent"},

16 {"FID": "IPV6.DEV_IID", "TV": "::1","MO": "equal","CDA": "not -sent"},
{"FID": "IPV6.APP_PREFIX","TV": "2001:0:0:1::/64",

18 "MO": "equal","CDA": "not -sent"},
{"FID": "IPV6.APP_IID", "TV": "::15","MO": "equal","CDA": "not -sent"},

20 {"FID": "ICMPV6.TYPE", "TV": 128, "MO": "equal","CDA": "not -sent"},
{"FID": "ICMPV6.CODE", "TV": 0, "MO": "equal","CDA": "not -sent"},

22 {"FID": "ICMPV6.CKSUM", "TV": 0, "MO": "ignore","CDA": "compute -checksum"},
{"FID": "ICMPV6.IDENT", "TV": 0, "MO": "ignore","CDA": "value -sent"},

24 {"FID": "ICMPV6.SEQNO", "TV": 0, "MO": "MSB", "MO.VAL" : 12,
"CDA": "LSB"},

26 {"FID": "ICMPV6.PAYLOAD", "TV": 0,"MO": "ignore","CDA": "value -sent"}
]

28 }
]

30 }
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Question 5.3.4 page 75 What will be the Sequence Number residue size to avoid
padding at the end of the SCHC message.

We saw that the padding was 5 bit long, so if we fix the MSB comparison to 11 bits, the 5
remaining bits will force the alignment of the SCHC residue.

Question 6.2.1 page 85 If the Device includes a new sensor, for example, CO2 level,
what is the impact on the description given in the table 6.1 on page 87?

A new URI is added to the list ; this will not have an impact on compression since 2 bits are
needed to code this residue and only 3 values were previously defined.

Question 6.2.2 page 92 Introduce some errors in the render_post method, such as a
division by 0. What will be the notification code?

The following capture shows the error message.

The notification 0xA0 can be written 0b101_00000 or 5.00.

Question 6.2.3 page 92 Suppose that an old CoAP server does not recognize the No
Response option. What are the consequences for the Device? How do we solve this ?

If the No Response option is ignored, since in rule 255/8 in Listing 6.1 on page 86, the
CDA for CoAP.CODE is ignore, every 2.04 notification will be compressed to rule 255/8.
The device will believe that every request leads to an error. One solution to protect against
this behavior is to use a matching list as an MO, listing all 4.0x and 5.0x on the TV and still
setting not-sent to the CDA.

Question 6.2.4 page 93 In this scenario, the notification is expected to arrive 1 second
after the transmission of the request. In an LPWAN environment, the downlink message
may be delayed to respect a Duty Circle. Does the system continue to work? How do
we solve this problem?
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The system will not work since there is no way to link the notification with the request. The
usage of CON messages instead of NON, forces an ACK for each request. The only way to
establish the link between a request and a response. The only way to make a link between
a request and a notification, when NON messages are used, is to take a Token. Since the
message ID cannot be removed, this adds one byte to the residue 3

Question 6.3.1 page 98 The underwater.json Set of Rules (cf. page 94) contains a
single rule used bidirectionally to compress request and response. Modify this Set of
Rules, to handle specifically the notification errors.

What is the impact on traffic?

We modify rule 1/3 and fix the value for CoAP.CODE to 2.05 for the GET response. We also
add a new rule to handle other notifications than 2.05. To avoid padding the rule length can
be 8 bit long, the new rule contains : ruleID (8 bits), App Port (16 bits), Code (8 bits), MID
(16 bits) and Token (16 bits).

This new rule allows 1 byte reduction of Rule 1/3.

Question 7.2.1 page 105 What will be the maximum FCN value if this field is coded 4
bits ? What will be the All-1 value of the FCN?

Frag gets numbers 14 to 0 and the All-1 FCN is 15.

Question 7.2.2 page 105 What append if the All-1 fragment is lost ?

This SCHC message and the following one will be discarded, as the second one will be
joined and the RCS of the second one will not correspond to the concatenation.

Question 7.6.1 page 111 Sigfox network uses an L2 frame with a maximum of 12
bytes. The FCN field size is 4 bits long. The Rule ID is 2 bits long and there is no
DTAG. Verify that a window field size of 3 bits is sufficient to transmit a compressed
frame of 1280 bytes.

3. Taking less than a byte, will lead to padding.
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The calculation is not straightforward, as it requires knowledge of the SCHC header size to
determine the number of bits per fragment, and understanding the total number of fragments
is necessary to determine the window field size and thus the size of the SCHC fragmentation
header.

Assuming initially, to estimate the quantity of fragment, that the window size is 3 bits.
Given that the Fragmentation header includes the Rule ID, the Window, and the FCN field,
its total size amounts to 2+3+4 = 9 bits.

It remains 12×8−9 = 87 bits to carry a fragment. We need ⌈1280×8
87 ⌉= 118 fragments

(117 of 87 bits and the last one of 61).
Each window contains 24 −1 = 15 fragments, so we need ⌈118

15 ⌉= 8 windows. This 3
bits in the window field, we can number them.

Question 7.6.2 page 111 With the same hypothesis as in the previous question, what
is the window field size if the FCN field size is set to 2? and to 5?

The FCN field size is set to 2, each window contains 3 fragments. We take the assumption
that the window field size is on 4 bits. The fragment header size is the same as in the previous
question 2+ 4+ 2 = 8, so each fragment contains 12× 8− 8 = 88 bits. The number of
fragments is ⌈1280×8

88 ⌉= 117 fragments, corresponding to ⌈117
3 ⌉= 39. With 4 bits for the

Window field size, it is not enough.
The windows field must be at least on 6 bits. So, a fragment contains 86 bits, leading to

120 fragments and 40 windows.

The FCN field size is set to 5, each window contains 31 fragments. Let’s keep the
window field size on 3 bits. The fragmentation header size is 2+3+5 = 10 bits and 86 bits
of payload. We have 120 fragments to send, and 4 windows. The window field size could be
reduced to 2 bits.

Question 8.2.1 page 120 When examining the Rule Manager rules display, how large
is the FCN field for rule 4/3?

openSCHC set by default the FCN field by default to 1 bits. It also includes a 2 bit long
Dtag field.
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Question 8.2.2 page 121 Why the Application do not receive a response to its ping
message?

There is no fragmentation rule defined for uplink traffic.

Question 8.2.3 page 121 Edit the rules on the Device and in the Core to fix the
problem.

A Fragmentation rule has been defined for downlink traffic. The device also needs an uplink
fragmentation rule to send back its answer.
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TABLE 11.1 – Field ID definition in different implementations
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