Journées thématiques du dpt D2 IRISA

Quantitative Measurement for Location Privacy in IP Vehicular Networks

“Optimal value for a pseudonym change”

Jong-Hyouk Lee (jh.lee@telecom-bretagne.eu)

June 28, 2012
Outline

- Vehicular Communication (VC)
- Location Privacy Concern
- Pseudonym for Location Privacy
- Pseudonym Change at the IPv6 Layer
- Optimal Value for the Pseudonym Change
- Concluding Remarks
VC providing safety and comfort driving (1/2)
VC providing safety and comfort driving (2/2)
Vehicular Communication (VC)

VC is based on wireless communication

VC relies on wireless communication connecting vehicles with roadside infrastructure and with each other

- Communication message contains informative parameters
 - vehicle’s location (e.g., GPS info.), heading direction, speed, time, etc
 - message’s identification

Message’s identification is an address

- For the access (MAC) layer: 48-bit mac address
- For the Geonetworking layer: 64-bit Geonetworking address
- For the IPv6 layer: 128-bit IPv6 address
Privacy and Location Privacy

Privacy is a human right to be protected

- 1948 Universal Declaration of Human Rights: Everyone has a right to privacy at home, with family, and in correspondence.

Location privacy is a particular type of information privacy

- Ability to prevent other parties from learning one’s current or past location

In VC, as messages contain the identification, location privacy is vulnerable

- Accordingly, *no real identification*, but *temporary identification* in VC
 - based on a set of *pseudonyms*
Pseudonym (1/2)

Pseudonym is *an arbitrary bit string*
- to generate a *temporary identifier* for communication

Pseudonym is interpreted in different forms depending on communication layers (protocols); in other words, the temporary identifier generated from a pseudonym is used differently
- *e.g.*, *the whole MAC address is replaced* by the temporary identifier while *the interface identifier (rightmost 64-bit) of IPv6 address is replaced* by the temporary identifier
Pseudonym (2/2)

One pseudonym is used only within a short period:

- e.g., a vehicle uses a pseudonym P_i in a short period t_i and changes to a new one P_{i+1} for the next short period t_{i+1} in communication messaging.

By using pseudonyms in a short period, attackers (observers) are not able (or at least not easily) to link different messages.

- i.e., preventing the attackers from identifying the vehicle emitting messages with pseudonyms.

The concept of pseudonym (i.e., use of temporary identifier) is also used in:

- 3GPP authentication
- Daily life (!)
Pseudonym Change at the IPv6 Layer

Pseudonym must be changed:

- Due to *the pseudonym change interval*
 - pseudonym expiration

- Due to *the change of point-of-attachment*
 - vehicle’s handover from one access router to another
Pseudonym Change at the IPv6 Layer

Pseudonym Change Interval

No specific standard for the pseudonym change interval

- If it is long, the privacy exposed time increases

- If it is short, the pseudonym change overhead increases
 - frequent address generation, validation (i.e., DAD), and registration procedures required
 - communication blocking, packet loss, etc
 - increased network traffic
 - neighbor discovery protocol messages at the access network level
 - binding update/ack messages between the vehicle (mobile router) and home agent (HA)

We need to develop an algorithm that finds an optimal value for the pseudonym change

- Making a balance between performance and location privacy while facilitating VC
Diagram

- t_0: the network enter (come in) time
- t_3: the network leave (come out) time
- $t_s = t_3 - t_0$: the network residence time
- t_1: observation start time
- t_2: new pseudonym update time
- T_r: pseudonym change interval

After the observation starts at t_1, the pseudonym is changed (updated) by either at t_2 by a periodical pseudonym change or at t_3 by a handover.
Suppose z is the privacy exposed time :

$$z = \min\{z_1, z_2\}, \quad (1)$$

where $z_1 = t_2 - t_1 (0 < z_1 < T_r)$ and $z_2 = t_3 - t_1 (0 < z_2 < \infty)$. Then, the PDF of z is given :

$$f(z) = f_1(z) \int_z^\infty f_2(t) \, dt + f_2(z) \int_z^{T_r} f_1(t) \, dt, \quad (2)$$

where $f_1(z)$ and $f_2(z)$ are PDFs of z_1 and z_2, respectively.
Now, we need to find out proper distributions for z_1 and z_2. In other words, we should have reasonable assumptions for the distributions.

Here, we take a general assumption for z_2: the network residence time t_s follows an exponential distribution with rate μ_s. Then, $f_2(z)$ is calculated as

$$f_2(z) = \mu_s e^{-\mu_s z}. \quad (3)$$

Once we find a distribution that captures realistic behaviors of the observation, i.e., values of z_1, we are ready for obtaining the privacy exposed time in the given model.
Privacy exposed time \((3/4)\)

If we assume that \(z_1\) follows a uniform distribution in \([0, T_r]\), \(f_1(z)\) is obtained as

\[
f_1(z) = \frac{1}{T_r}.
\]

(4)

Now, we have \(f_1(z)\) and \(f_2(z)\) that are the PDFs of \(z_1\) and \(z_2\). So, we can obtain the PDF of \(z\) (the privacy exposed time), \(f(z)\), as

\[
f(z) = f_1(z) \int_z^\infty f_2(t) dt + f_2(z) \int_z^{T_r} f_1(t) dt
\]

\[
= \frac{1}{T_r} e^{-\mu_s z} + \mu_s e^{-\mu_s z} \frac{1}{T_r} (T_r - z).
\]

(5)
As long as we have the complete form of $f(z)$, we can make the Laplace transform of $f(z)$. Then, by solving the Laplace transform, we will have the expected privacy exposed time, $E[z]$.

Suppose the vehicle generates packets with rate p (packets/sec). Let N denotes the expected number of privacy exposed packets (that use the same pseudonym). Then, it is calculated as

$$N = p \times E[z].$$

(6)
Recall two cases cause the pseudonym change: 1) the pseudonym change interval T_r and 2) the network residence time t_s. Since we cannot control the movement of vehicle, i.e., handover of vehicle, we focus on T_r here to find the optimal interval value for the pseudonym change.

As T_r increases, $N = p \times E[z]$ increases. The optimal value of T_r is thus the maximum value of T_r while N is below a pre-defined threshold value th, which is a security indicator. Note that th should be determined depending on the application types and vehicle’s situation (road type, driving time, driving location, etc).
As T_r increases, $N = p \times E[z]$ increases. The optimal value of T_r is thus the maximum value of T_r while N is below a pre-defined threshold value th.

- e.g., $T_r^*(th1)$ is the optimal pseudonym change interval when $th1$ is given, while $T_r^*(th2)$ is the optimal pseudonym change interval with $th2$.
Algorithm 1

1: $T_r ← 1, a ← 0.1$
2: Calculate $N ← p \times E[z]$;
3: while $N < th$ do
4: $T_r ← T_r + a$;
5: Calculate $N ← p \times E[z]$;
6: end while
7: Return $T_r^* ← (T_r - a)$;

Since the above code (algorithm) considers the threshold value th (as a security indicator) with the observation behavior $f_1(z)$ and mobility behavior $f_2(z)$, it is seen as an adaptive algorithm to find the optimal pseudonym change interval T_r^*.
We have shown:
- the usage of *pseudonyms* in VC
- the importance of making a balance between *performance* and *location privacy*

An approach for *an optimal pseudonym change* has been briefly introduced:
- with some probability assumptions, e.g., vehicle’s residence time
- and limitations, e.g., only IP level pseudonyms are considered

The approach can be further improved:
- with realistic probability assumptions for $f_1(z)$ and $f_2(z)$
- and by studying VC traffic characteristics with security concerns for th
Thanks

Thank you for your attention ;)

Jong-Hyouk Lee, Ph.D, SMIEEE
jh.lee@telecom-bretagne.eu